【数論幾何学】慶應義塾大学の大学院生が発見、世界でたった一組の三角形 これまで知られていなかった定理の証明に成功at NEWSPLUS
【数論幾何学】慶應義塾大学の大学院生が発見、世界でたった一組の三角形 これまで知られていなかった定理の証明に成功 - 暇つぶし2ch182:名無しさん@1周年
18/09/18 23:48:57.30 SHJ5pxaq0.net
>>143
証明の過程では、まず問題となる三角形の組を種数 2 の代数曲線でパラメタ付けすることで、元の問題を『特殊な種数 2 の代数曲線上の有理点集合の決定』という別の問題に帰着しました。
このような代数曲線上には有理点が有限個しかないことが知られていますが、有理点集合を完全に決定するためにはさらに高度な技術が必要になります。
 そこで、本研究では、p 進 Abel 積分論に基づいた Chabauty-Coleman 法と呼ばれる解析的な手法を用いることで、上記の代数曲線上には有理点が 10 個しかないことを証明しました。
こうして得られた 10 個の有理点のうち、8 個は「辺の長さが 0 または負となる潰れた三角形の組」に対応してしまい、残りの 2 個が共に上図の三角形の組に対応します。
一方、Chabauty-Coleman 法を実行する際の主な問題点は、代数曲線の Mordell-Weil rank(※3)と呼ばれる量が種数よりも小さくなければならない、というものです。
本研究では、2-降下法(※4)と呼ばれるコホモロジカルな手法により Mordell-Weil rank が 1 であることを証明することで、この問題点を克服しました。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch