数学基礎論・数理論理学 その19at MATH
数学基礎論・数理論理学 その19 - 暇つぶし2ch139:132人目の素数さん
24/04/18 12:09:56.34 5l0vuf/E.net
>>138
あんたは数学科で落ちコボレさんか?
>クラスで付番されたクラスの”組”とか考えてもいいの?
1)>>137の通りだが、補足しておくと、なんでクラスを制限するのか?
2)それは、下記ラッセルのパラドックスの関連していて、「全ての集合の集まり」はクラスであって
 無制限にクラスを集合とすると、パラドックスになる
3)ZFCは、クラスを認めないので、パラドックスは回避できる
4)フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG)では、クラスは制御されて矛盾が出ないようになっている(だから、クラスの付番はあり)
5)じゃあ、NBGの方が良いんじゃね? と思うだろうが、基礎論屋さんはZFCの方がシンプルで良いと思うらしい(渕野先生とか)
6)なお、圏論が流行りで、基礎論以外の人は クラスは使いたいみたいだよ
URLリンク(ja.wikipedia.org)
ラッセルのパラドックスとは、素朴集合論において、自身を要素として持たない集合全体からなる集合の存在を認めると矛盾が導かれるというパラドックス。バートランド・ラッセルからゴットロープ・フレーゲへの1902年6月16日付けの書簡においてフレーゲの『算術の基本法則』における矛盾を指摘する記述に現れ、1903年出版のフレーゲの『算術の基本法則』第II巻の後書きに収録された[2]。なお、ラッセルに先立ってツェルメロも同じパラドックスを発見しており、ヒルベルトやフッサールなどゲッティンゲン大学の同僚に伝えた記録が残っている
ラッセルの型理論(階型理論)の目的のひとつは、このパラドックスを解消することにあった
概要
「それ自身を要素として含まない集合」を「M集合」とし、「すべてのM集合を成分とする集合R」を作ってみる
そうすると、「任意の集合 X」に関しては、「 Xは Rに含まれる」←→「 Xは Xに含まれない」という定式が成り立つ
そして特に X= Rとすれば、「 Rは Rに含まれる」←→「 Rは Rに含まれない」となり、パラドックスが明示される
矛盾の解消
1.公理的集合論による解消
URLリンク(ja.wikipedia.org)(%E9%9B%86%E5%90%88%E8%AB%96)
クラス (集合論)
集合論及びその応用としての数学におけるクラスまたは類(class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツェルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている
(どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch