ガロア第一論文と乗数イデアル他関連資料スレ4at MATH
ガロア第一論文と乗数イデアル他関連資料スレ4 - 暇つぶし2ch224:132人目の素数さん
23/05/19 12:56:35.22 JFpC5B37.net
>>206
スレ主です
少しだけ追加
>>205 補足
>そして、仮定側で除外した例外点は
>結論側では、”結局holomorphicでした”ってことかな
厳密な表現は、仮定側で除外した例外点においても
”holomorphic”となる正則関数の存在いえる
ってことね
(人為的に、”holomorphic”でない孤立点を作るのは別として)
さて
>>166-167 に戻る
> 6.4 等角写像の定義をめぐって
>定理 6.12 (メンショフの定理) 領域 D で定義された定数でない連続関数 f(z) が,D に
>おいて正則になるための必要十分条件は,D 内の孤立集合を除いて D の各点で f が等角
>写像になることである。
Looman-Menchoff theorem>>189
Let Ω be an open set in C and f : Ω → C be a continuous function. Suppose that the partial derivatives
∂f/∂x and ∂f/∂y
exist everywhere but a countable set in Ω.
Then f is holomorphic if and only if it satisfies the Cauchy?Riemann equation:
∂f/∂z^-=1/2(∂f/∂x+∂f/∂y)=0. (注:z^-は、共役複素数)
が言えたとして、(必要十分の)逆の等角写像→holomorphicはどうか?
(holomorphic→等角写像は、f’(z)≠0から従うことは、既に書かれている)
等角写像の定義次第だが、例えば、下記の古田 公司 野原 勉氏の定義を取れば
ヤコビ行列を使っている(ux(x, y)などの記号説明は後の資料ご参照)ので
∂f/∂x and ∂f/∂yの存在は含まれていて
Looman-Menchoff theoremが使えて
holomorphic であることが従う
(つまり、必要十分が言える)
あと、等角写像の定義でヤコビ行列を使うと
その点での
”continuous function”は含意される気がするが
厳密な確認はしていないが
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch