二項定理を使ったフェルマーの最終定理の証明at MATH
二項定理を使ったフェルマーの最終定理の証明 - 暇つぶし2ch1:日高
20/09/11 06:51:42.63 Z/+Gix7z.net
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。(aは有理数)
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)の右辺を二項展開すると、yが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(2)はa=1以外、rが有理数のとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(4)のx,y,zは、(3)のx,y,zのa^{1/(p-1)}倍となるので、(4)のx,y,zも整数比とならない。
(3)をx=sw、y=twとおいて、(sw)^p+(tw)^p=(sw+p^{1/(p-1)})^pとする。(s,tは有理数、wは無理数)
両辺をw^pで割って、s^p+t^p=(s+(p^{1/(p-1)})/w)^pとする。
(p^{1/(p-1)})/wが無理数の場合は、(3)と同じとなるので、tが有理数のとき、sは無理数となる。
(p^{1/(p-1)})/wが有理数の場合は、(4)となるので、sが有理数のとき、tは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。


レスを読む
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch