純粋・応用数学・数学隣接分野(含むガロア理論)13at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)13
- 暇つぶし2ch248:ノあたる超楕円曲線Y2=Xn+a1Xn?1+?+an を紹介し、これを材料にして「因子」「主因子」「整因子」「微分因子」などを解説していく。因子とは曲線上の点に係数をつけた形式和だ。とりわけ重要なのは有理関数について、その零点にその位数を掛けたものと、その極(値が無限大になる点)にその位数を掛けたものとを、足し合わせた「主因子」である。これについてはいろいろな代数幾何の本で読んだが、なかなか咀嚼できず、本書でやっと溜飲下がる解説に出会った。とりわけ、種数(図形に空いている穴の個数)の定義を「微分因子」で行っており、いろいろな本で読んだ種数の定義の中で最も手短なもので嬉しかった。(コホモロジー群の次元とかで定義された日にゃあ、溺れ死ぬ)。なにより、具体例が適切で当を得ている。そのあと、あの有名な「リーマン・ロッホの定理」が登場するが、応用の仕方を語るのに終始しているのが良い。最後は「ヤコビ多様体」での代数学が語られる。 代数幾何を勉強したいがどの本でも途中で遭難してしまう(ぼくのような)人は、是非、この第10章から入門すると良いと思う。楕円曲線を知らないなら、第9章から入ればいい。第9章と第10章は他と独立した章として読めるから、この2章だけ読むだけでもすごく有益である。 (引用終り) 以上
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch