箱入り無数目を語る部屋at MATH
箱入り無数目を語る部屋 - 暇つぶし2ch353:現代数学の系譜 雑談
21/08/08 06:14:38.07 KfKejekJ.net
>>323補足
(再録)
何をおびえているのかな?w
1.有限からの極限を取るのは、数学の常套手段だよ。人に言われずにそれができないやつは、数学落ちこぼれさん
2.有限からの極限は、普通はレーベンハイムスコーレムの上方定理から、有限での性質を引き継ぐことが多い。引き継がないのが例外だろ
3.そして、確率変数の族については、可算無限族は(連続濃度の族もだが)現代確率論の射程内だよ
 (下記 確率論 I 第9回講義ノート 2006.12.08 樋口 保成 神戸大 )
URLリンク(ja.wikipedia.org)
レーヴェンハイム?スコーレムの定理(英: Lowenheim?Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。この事実を定理の一部とする場合もある。
URLリンク(www.math.kobe-u.ac.jp)
確率論 I 第9回講義ノート 2006.12.08 樋口 保成 神戸大
P28
無限個の事象族 Aλ ∈ F, λ ∈ Λ が独立であ
るとは,この 任意の有限部分族 Aλ1, . . . , Aλn が独立なときに言う.
無限個の確率変数 {Xλ; λ ∈ Λ} が独立とはこの中の任意有限個の確率変
数の組 Xλ1, . . . , Xλn が独立なときに言う.
(引用終り)
確かに、極少数の例外はある>>324-332
だからと言って、無限を考えるとき「有限からの極限を取る」という”数学の常套手段”の有用性を否定するのは
数学落ちこぼれへの道だ
無限を考えるとき、まず「有限からの極限」を考えてみるのが、”数学の常套手段”
そして、次に、”極少数の例外”について、どうなっているかを考察する
それが、手順ってものだよ、おサルさんwww


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch