純粋・応用数学(含むガロア理論)4at MATH
純粋・応用数学(含むガロア理論)4 - 暇つぶし2ch570:現代数学の系譜 雑談
20/09/20 08:18:26.72 w0R3FJMo.net
>>497
つづき
追記:
数学者にとっては、現在常識となっている「双対」という概念ではあるが、これが案外捉えにくいものだという指摘もある。内積に長年慣れ親しみ、ドップリ浸かっていると、双対は自分自身と直ちに同一視できるから、区別できなくなっているのかもしれない。目の前に「存在する内積」を使ってどこが悪い、ということなのだろう。……
また、区別しているようでも、一つのベクトルの反変成分と共変成分があると思っている人もある。そのような同一視がどのような機構から生じるかを一度反省しないと、正確な理解は永久に得られないだろう。
(梅田亨『森毅の主題による変奏曲 上』微分篇(2))
反変ベクトル・共変ベクトルの気持ち悪さ
まず反変・共変という名前の付け方に何だか違和感がある。反変ベクトルと共変ベクトルを内容で比べると、反変ベクトルの方が「先・主」で、共変ベクトルは「後・従」という感じがするけど、反変・共変の語感はそれとは逆に感じる。けれどそれは置いとく。
で何で反変ベクトル・共変ベクトルという名前かというと「反変ベクトルの成分変換の式は、基底の変換式と逆になっていて、共変ベクトルの成分変換式は基底の変換式と同じだから」とか説明される(しかしこの基底自身は反変ベクトル)。
ここで急に基底のことが出てくるのだけど、そもそも基底の話なしに成分の話が始まりベクトルの定義がなされるというのが、かなり変な感じがする。
線形代数的には、まず線形空間が定義され(=何がベクトルなのかが定まる)、それからベクトルの中から基底を決めて、基底に対応して成分表示がされる、という流れになる。なのに反変ベクトル・共変ベクトルの定義では、まず成分が登場しその性質によってベクトルかどうかが決まり、基底は登場しない。これはあまりうれしくない。基底の話が出てこないので、ベクトル自体とその成分表示との区別がわかりにくくなっているような気がする。
追記:
ちょっとした、しかし、重要な注意としては、微分幾何の「反変(contravariant)ベクトル」「共変(covariant)ベクトル」という用語の不適切さをパウリが指摘し、その代わりに「共傾(cogredient)ベクトル」「反傾(contragredient)ベクトル」という用語を提唱している点である。
(梅田亨『森毅の主題による変奏曲 上』微分篇(1))
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch