20/08/27 19:53:28.06 MGNmMRXt.net
>>294
これはちょっと回りくどいか
より直接的に、
10^n + 2^n = (2^n)*(5^n + 1)
において、 5^n + 1 は偶数だから右辺は 2^(n+1) の倍数になる。
すなわち、
10^n + 2^n = (2^(n+1))*k
となる整数 k が存在する。この両辺を 2^n で割ると、
5^n + 1 = 2k
となる。
ここで 5^n の一の位は常に 5 であるので、 5^n + 1 の一の位は 6 である。
一方、 5^n + 1 は 4 で割り切れないので、 k は奇数でなければならない。
このとき、 2k の一の位が 6 となるためには、 k の一の位は 3 でなければならない。
ゆえに、 k = 10m + 3 となる整数 m が存在する。