19/01/21 09:36:12.79 TK+8KOsR.net
>>395
y ∈ A をピックアップして A' := { x ∈ A ; d(a,x) ≦ d(a, y) } を作れば 、A' は 有界閉集合
Euclid空間では 有界閉集合 ⇔ コンパクト集合
d(a,x) は連続写像で, 連続写像による コンパクト集合の像は コンパクト集合 ( = 有界閉集合 )
実数の有界閉集合は 下限値 ξ を持ち(∵下に有界) , それが最小値である (∵ 閉集合) .
f(A') の最小値 ξ は f(A) の最小値である.
後半は A (コンパクト集合 = 有界閉集合) をそのまま使って 像の下限値, 上限値 を取れば良い.