18/12/16 13:23:13.34 JTc4r8fR.net
突然ですが
下記、数学セミナー2019年1月号 ショルツェさん
パーフェクトイド 説明がいいね
なんとなく、分った気にさせてくれる(^^
(抜粋)
Qpをp進数体、Fp((t))を位数pの有限体Fp上の形式ローラン級数体とする
Qpにpのp^n乗根 p^(1/p^n)を付け加えて得られる体Qp( p^(1/p^n))を考える
この調子で、p^n乗根 p^(1/p^n)を整合的に取って得られる体の拡大の
合併 ∪ n>=1 Qp( p^(1/p^n))
を考え、その完備化をKo,∞ と書きます
Fp((t))にも仲良くt^(1/p^n)を付け加え、
合併 ∪ n>=1 Fp((t))(t^(1/p^n))
を考え、その完備化をKp,∞ と書きます
定理
Ko,∞ の絶対ガロア群と
Kp,∞ の絶対ガロア群の間に
自然な同型が存在する。
(引用終り)
URLリンク(www.nippyo.co.jp)
数学セミナー 2019年1月号
[特集1]
国際数学者会議2018
*[フィールズ賞業績紹介] ショルツェ……今井直毅 26
つづく