17/12/28 23:46:02.50 IsA0R4yK.net
>>41 つづき
ああ、いま改めて読むと
Bulletin of the Calcutta Mathematical Society 49 (1957) Senguptaより
”・・・ f is continuous and discontinuous are each dense in R.
Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).”
なんてありますね。”at least one of the four Dini derivates of f is infinite”が、貴方の定理に近いかな?
”Then E is co-meager in R (i.e. the complement of a first category set).”か・・
これか、これに近い文献を読まないことには、訳わからんな
えーと、Meagre setか・・
”E is co-meager in R”が、イメージできんな・・(^^
前提a)(連続不連続が稠密)を、b)(連続とディニ微分発散が稠密な組み合わせ)に、緩和しても・・
a) f is continuous and discontinuous are each dense in R.
↓
b) f is continuous and the E *) are each dense in R. ( *)the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.)
a)Eは、co-meager
↓
b)Eは、meager
には出来ない? それとも出来るの?
定理1.7成立なら、「 meager には出来ない」?
これ、やっぱり元論文読まないと、イメージ湧かないな~(^^
まあ、ゆっくりやろうや