分からない問題はここに書いてね438at MATH分からない問題はここに書いてね438 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト1000:132人目の素数さん 17/12/21 09:36:32.01 KTVs56hk.net s を正の実数とする。 x, y, z が 0 < x < s 0 < y < s 0 < z < s x + y + z = 2*s という条件をみたすとき、 f(x, y, z) = (s - x)*(s - y)*(s - z) を最大にする点 (x, y, z) があればラグランジュの未定乗数法により求めよ。 1001:132人目の素数さん 17/12/21 09:48:34.20 KTVs56hk.net 0 ≦ x ≦ s 0 ≦ y ≦ s 0 ≦ z ≦ s x + y + z = 2*s という条件をみたす点 (x, y, z) の集合はコンパクト集合である。 f は連続写像だからこのコンパクト集合上で最大値をとる。 点 (2*s/3, 2*s/3, 2*s/3) はこのコンパクト集合上の点であり、 f(2*s/3, 2*s/3, 2*s/3) = (1/27)*s^3 > 0 である。 x, y, z のどれかが s であれば f = 0 であるからそのような (x, y, z) は最大点ではない。 x, y, z のどれかが 0 であるとする。例えば、 x = 0 であるとする。 このとき、 y + z = 2*s 0 ≦ y ≦ s 0 ≦ z ≦ s であるから y = z = s でなければならない。 f(0, s, s) = 0 である。 よって、 x, y, z のどれかが 0 であるような点 (x, y, z) は最大点ではない。 以上から、最大点を (x, y, z) とすると、 x, y, z は、 0 < x < s 0 < y < s 0 < z < s x + y + z = 2*s という条件をみたす。 よって、 x, y, z が 0 < x < s 0 < y < s 0 < z < s x + y + z = 2*s という条件をみたすとき、 f(x, y, z) = (s - x)*(s - y)*(s - z) を最大にする点 (x, y, z) は存在する。 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch