15/07/25 21:48:50.24 tAJoLOyr.net
さわりをご紹介
URLリンク(note.chiebukuro.yahoo.co.jp)
ホモロジー? コホモロジー? (空間と関数との関連性)
ライター:sedrft1さん(最終更新日時:2014/9/24)投稿日:2012/1/21
私が大学の数学科に入って面食らったのが、このホモロジー、コホモロジーというものです。
なにしろ抽象的で難しい…。何を言っているのかさっぱり分からない…。
とにかく、平凡な頭の私にはさっぱりの内容でした。
私は代数的位相幾何を専門的に勉強してきたわけではないし、もちろん今でもよく分からないのですが、とりあえず出来る範囲で説明したいと思います。
(参考文献:『コホモロジー』安藤・他(著)、日本評論社)
よくホモロジーの習い始めで最初に出てくるのは単体分割のホモロジーです。
直観的にはこれがもっとも分かりやすい、教育的なものではないかと思います。
すなわち、与えられた空間を単体分割(線分や三角形など)という、もっともわかりやすい基本的な要素に分解し、そこに加群をうまく入れて代数的に計算できるようにして、ホモロジーという空間の位相的性質をもつ群を定義するというものです。
特異ホモロジーでは特異単体というものを使って、CW複体においては開球体を使ってホモロジーを構成します。
大雑把にいえばホモロジーとは、空間の中にあるサイクルという各次元の「穴」たちの数を代数的に調べようということです。(森田茂之・著『微分形式の幾何学』岩波書店 p. 101)
つづく