15/04/11 06:20:04.21 pLE9DoNh.net
>>36 つづき
問題(1) >>16を再録しておく
問題
体 L の体 K 上の自己同型写像全体の集合を AutK(L) と書く。
すなわち
AutK(L)={σ|K,L は体、K⊂L、σ:L→L は環同型写像、k∈K⇒σ(k)=k}
である。このとき
(1) card(AutQ(R)) を求めよ。但し、Q,R はそれぞれ有理数体、実数体とする。
1.まず、代数拡大の話から
2.αを代数的数とし、f(x)をその最小多項式(n次)とする(つまりf(α)=0の最低次数の多項式。係数はQ)
3.単項拡大Q(α)を考えると、Q(α)はn次のベクトル空間と考えることができる。拡大次数はn
(αの0次からn-1次の数をベクトル空間の基底にできるという話だったね)
4.だから、L'=Q(α)と書くと、card(AutQ(L')) =n