ベルの不等式 part5©2ch.net at SCI
ベルの不等式 part5©2ch.net - 暇つぶし2ch1:ご冗談でしょう?名無しさん 転載ダメ©2ch.net
15/01/19 20:27:03.03
1 + P(b,c) ≥ |P(a,b) - P(a,c)|

ベルの不等式が間違えだという者、ベルの不等式が正しいという者、
一体世界はどうなっているのだろうか?
実在はないのだろうか?いや、実在はあるばず。
いつになったら、この問いに決着が付くのだろう?

URLリンク(www.drchinese.com)
URLリンク(www.ria.ie)

どうやら、ρ(λ)が怪しいようだ。

局所性

A(B)の結果がa(b)に依存するのと同様にはb(a)に依存しないこと

λ-独立性

隠れた変数λは、装置の設定に依存しない。とするものである。

λ-依存性

隠れた変数λは、観測の影響を受けるとする。というものである。

共通原因:λ

2:ご冗談でしょう?名無しさん
15/01/19 20:28:55.92
a,b,c,λは、極座標における、偏角で表現する単位ベクトルとする。

ベルの不等式信者
ρ(λ)は、確率密度関数であるが、装置の影響を受けないものと考えている。
このため、ベルの不等式を破ることはないが、P(a,b)が装置の設定の影響を受けて、特定の相関を示せない。
例えば、∠abを直角としても、a,bの位置関係によって、P(a,b)≠0で、定まった値にはならない。

ベル間
ρ(λ)は、確率密度関数であるが、観測の影響を受けると考えている。
確率密度関数は、
ρ(λ-a),ρ(λ-b),ρ(λ-c)
と考えている。
このため、P(a,b)は、常に-cos(θ)という相関を示し、ベルの不等式を破る。
a側での観測の結果は、
∫ dλρ(λ-a)A(a, λ)B(b, λ)
b側での観測の結果は、
= ∫ dλρ(λ-b)A(a, λ)B(b, λ)
というように、局所性を破ってはいない。

3:ご冗談でしょう?名無しさん
15/01/19 20:29:51.91
ρ(λ-0) = (1/4)|cos(λ-0)|
これだとベルの不等式は破らない。
しかし、これを
ρ(λ-a) = (1/4)|cos(λ-a)|
ρ(λ-b) = (1/4)|cos(λ-b)|
ρ(λ-c) = (1/4)|cos(λ-c)|
それぞれの相関の確率密度関数とする。
この場合、確率密度関数の形は変わらないが、これならば、ベルの不等式を破る。
ρ(λ-0) = (1/4)|cos(λ-0)|
この場合は、原点に固定しているが、
ρ(λ-a) = (1/4)|cos(λ-a)|
ρ(λ-b) = (1/4)|cos(λ-b)|
ρ(λ-c) = (1/4)|cos(λ-c)|
などは、基底に追随している。
a,b,c,は、座標上自由に配置出来るとしているが、確率密度関数は、原点固定でなければならないのであろうか。
座標上の原点は、実空間の何に対応させれば良いのだろうか。

4:ご冗談でしょう?名無しさん
15/01/19 20:30:29.15
a,b,c,λは、極座標における、偏角で表現する単位ベクトルとする。
P(a,b) = ∫ dλρ(λ-a)A(a, λ)B(b, λ)とする。
ρ(λ-a)は、aを量子化軸(分布関数の対称軸)とした場合の隠れた変数とのオフセットを引数とする確率密度関数である。

1 + ∫ dλρ(λ-a)A(b, λ)B(c, λ) ≥ |P(a,b) - P(a,c)|

1 + ∫ dλρ(λ-b)A(b, λ)B(c, λ) ≥ |P(a,b) - P(a,c)|

1 + ∫ dλρ(λ-c)A(b, λ)B(c, λ) ≥ |P(a,b) - P(a,c)|

三つの不等式の違いはお分かりだろうか?
本来左辺は、P(b,c) と記述されているのが、ベルの不等式であるが、そうすると違いが見えなくなってしまうので、このように表現した。
このうち、一つはベルの不等式を満たすが、残りの二つは、ベルの不等式を破る。
もちろん、積分の計算方法ほ、量子力学統計予測が計算できるものであればかまわない。

5:ご冗談でしょう?名無しさん
15/01/19 20:31:06.28
基本形

ρ(λ) = (1/4)|sin(λ)|
aは、(1/2)π回転しているとします。
λ=[0,π] で、A (a, λ)=+1
λ=[π,2π] で、A (a, λ)=-1
とします。
b は (1/2)π-θ回転しているとします。そうすると、
λ=[0,π-θ] で、B(b, λ)=-1
λ=[π-θ,2π-θ] で、B(b, λ)=+1
λ=[2π-θ,2π] で、B(b, λ)=-1
となります。
これを計算すればよろしい。

6:ご冗談でしょう?名無しさん
15/01/19 20:31:35.31
直角の例

ρ(λ) = (1/4)|sin(λ)|

a は (3/4)π回転しているとします。
λ=[0,(1/4)π] で、A (a, λ)=-1
λ=[(1/4)π,(5/4)π] で、A (a, λ)=+1
λ=[(5/4)π,2π] で、A (a, λ)=-1
となります。

b は (5/4)π回転しているとします。そうすると、
λ=[0,(3/4)π] で、B (b, λ)=-1
λ=[(3/4)π,(7/4)π] で、B (b, λ)=+1
λ=[(7/4)π,2π] で、B (b, λ)=-1
となります。
これを計算すればよろしい。

7:ご冗談でしょう?名無しさん
15/01/19 22:31:42.07
粒子Aと粒子Bの粒子対がもつれている状況を考える。
ここでベルの不等式で仮定された局所性が破れていたとする。
まずは非局所性を粒子の観点から考えてみる。
粒子Aはスピンの情報を瞬時に粒子Bに伝え、粒子Bのスピンを確定させる。
これは物理的な観点からは考えにくい。
一方、コンピューターを系に組み入れた場合を考えてみる。
粒子Aと粒子Bのスピンの情報を出力するときに「コンピューターによる情報の組み合わせ」が生じる。
組み合わせを行わなければ相関は調べられないから当然である。
粒子のスピンが始めから決まっていてもコンピューターによる組み合わせの結果
その相関は量子論の結果を再現するものとなったとしたらどうだろう?
コンピューターを系に含んだ場合、非局所性と因果律の問題は生じない。
また、量子論の相関では、スピンの測定方向の角度という人為的なパラメーターが含まれていることが不自然。
この不自然な操作にも関わらず、実験を再現するということは
量子論は実験結果がどう反映されるかを決定する理論なのではなかろうか。

8:ご冗談でしょう?名無しさん
15/01/19 23:15:55.22
ベルの不等式の局所性の仮定に疑問がある。
導出の際は観測基底を含まないとしているが、観測基底をどうするかは機械が決めている。
例え乱数的であったとしても、乱数を生じるように設計するのは機械。
機械においてはこれらの情報は共有されている。
粒子の観点で考えず、情報を集め反映する機械の観点で考えれば良い。


系の決定で量子状態が決定される


系を決定→量子状態がどう反映されるかが決定→実験に反映される
というプロセスをたどればよろしい。
スリット実験においても、ある規則性を持ったランダム分布になることは系の設定の時点で分かる。
決定論であっても、その反映の仕方が系の介在で決定論の予測する結果と異なるとすればいい。
意思解釈の曖昧な人間の意思を
具体的な系の意思に変更すれば何の問題も生じないことに気が付いた。

9:ご冗談でしょう?名無しさん
15/01/20 06:48:01.44
量子という謎のp.38には、
「確率的隠れた変数」では、A,Bの測定結果a,bが得られる確率は、変数λによって決まると考える。
とある。

このことから、離散確率分布を想定していることになる。
普通、連続確率分布の場合は、確率変数がある範囲にある場合の確率をいう。
離散を仮定したにも関わらず、その後連続分布であるかのように扱っている。
a=±1,b=±1であるから、a=1となる範囲という意味ならば、それも良いであろう。
そうすると確率は、装置に関わらない部分で決定されるということになる。
細かく見て行くと、「確率的隠れた変数」も、矛盾にぶつかる。
この矛盾性を証明しようと、観測基底を探したが、見当たらない。
観測基底があると不都合なのである。
見事に隠している。

10:ご冗談でしょう?名無しさん
15/01/20 08:47:44.49 mWr5jBuK
こちらのスレは、ベル不等式が間違っていると考えるベル間の方々が独自理解をひけらかして自慢し合うスレです

11:ご冗談でしょう?名無しさん
15/01/20 08:52:03.24 mWr5jBuK
思う存分独自理解をひけらかしてひとりよがってください

その様子を観察したい方もこちらでどうぞ

12:ご冗談でしょう?名無しさん
15/01/20 14:27:03.22 mWr5jBuK
来いよハッタリ

逃げるのか?

13:ご冗談でしょう?名無しさん
15/01/20 14:35:36.95 mWr5jBuK
またハッタリは自分の都合の良いように誘導しようとしてるな
猿が

14:ご冗談でしょう?名無しさん
15/01/20 14:56:51.51
局所性も確率分布も理解していないハッタリw

15:ご冗談でしょう?名無しさん
15/01/20 15:16:05.26
自分のホームグラウンドでは怖くて戦えない臆病者ハッタリw

16:ご冗談でしょう?名無しさん
15/01/20 15:55:53.71
ここはハッタリのカキコを裏で批判するスレです

17:ご冗談でしょう?名無しさん
15/01/20 15:58:05.76
お前らがここで相手してやらないから外に迷惑かけてちゃうんだぞ

18:ご冗談でしょう?名無しさん
15/01/20 15:58:50.87
確率分布の屁理屈はまさに基地外

19:ご冗談でしょう?名無しさん
15/01/20 15:59:40.55
ハッタリさまはいつこちらに戻られるのですか?

20:ご冗談でしょう?名無しさん
15/01/20 16:01:50.32
数学知らないんじゃない?

21:ご冗談でしょう?名無しさん
15/01/20 16:10:09.82
同じこともう何年も繰り返してるんだぜ

22:ご冗談でしょう?名無しさん
15/01/20 16:21:49.14
前スレで論破されて沈黙せざるを得なかったのに、性懲り無いな

23:ご冗談でしょう?名無しさん
15/01/20 16:29:38.34
サイコロ目は一様分布
はい論破w

24:ご冗談でしょう?名無しさん
15/01/20 16:32:20.34
教祖様のお帰りです
ではご高説をどうぞ

25:ご冗談でしょう?名無しさん
15/01/20 16:34:55.37
ハッタリ君出禁スレで構ってもらいたくて必死です

26:ご冗談でしょう?名無しさん
15/01/20 16:38:14.04
発狂することを論破というハッタリ君

27:ご冗談でしょう?名無しさん
15/01/20 16:47:04.30
頭の悪い質問に答えずに済む魔法の言葉、それが「ハッタリ」w

28:ご冗談でしょう?名無しさん
15/01/20 16:53:50.44
教祖様のお帰りです
ではご高説をどうぞ

29:ご冗談でしょう?名無しさん
15/01/20 16:59:55.72
ハッタリのせいでスレの質が激しく低下する

30:ご冗談でしょう?名無しさん
15/01/20 17:00:12.09
これに発狂したハッタリ君

837 ご冗談でしょう?名無しさん sage 2015/01/18(日) 20:27:24.21 ???

ここからまた100レスくらいかけて文がやっと指摘されて
ハッタリがまたすっとぼけるという流れになります

31:ご冗談でしょう?名無しさん
15/01/20 17:00:52.42
いやいやこのスレだけは教祖様のおかげでレベルが高いです
ありがとうございます

32:ご冗談でしょう?名無しさん
15/01/20 17:17:18.14
ハッタリ教狂粗w

33:ご冗談でしょう?名無しさん
15/01/20 18:23:56.21
間違え(笑)

日本語すら怪しいレベルかよw

34:ご冗談でしょう?名無しさん
15/01/20 23:12:55.93
ハッタリがファビョってるw

35:ご冗談でしょう?名無しさん
15/01/21 00:01:47.45
ハッタリのアカデミックコンプレックスは相当なものだな

36:ご冗談でしょう?名無しさん
15/01/21 07:54:44.00
P(a,b) = ∫ dλρ(λ)A(a, λ)B(b, λ)について、
A(a, λ)は、観測基底aと隠れた変数λの成す角が鋭角の場合は、+1を返し、鈍角の場合ほ、-1を返す。
B(b, λ)は、観測基底bと隠れた変数λの成す角が鋭角の場合は、-1を返し、鈍角の場合ほ、+1を返す。
たったこれだけのことである。
これに非局所性を加えるのは、基本的に困難である。

37:ご冗談でしょう?名無しさん
15/01/21 08:43:34.51
このスレはベル不等式にまつわる真理追究のスレです
これぞ真理だと思える考えをぶつけてください

38:ご冗談でしょう?名無しさん
15/01/21 10:46:17.84
ハッタリが粘着してるから、スレを入れ替えるか

39:ご冗談でしょう?名無しさん
15/01/21 13:41:28.43
またハッタリが敗北しているな
Mだなw

40:ご冗談でしょう?名無しさん
15/01/21 18:15:14.86
AliceとBobで勝利宣言w
小汚いジエンだろ?www

41:ご冗談でしょう?名無しさん
15/01/21 18:39:51.71
教祖様が知らないわけがない

42:ご冗談でしょう?名無しさん
15/01/21 18:43:42.77
ハッタリ降臨w

43:ご冗談でしょう?名無しさん
15/01/23 01:59:15.87
隠れた変数であるはずの「リソース」とやらが古典と量子で区別できる!

情報のアホのペテンが明るみに出てきたなw

44:ご冗談でしょう?名無しさん
15/01/23 02:01:06.06
おっと誤爆だ
でも、こっちも見てるんだろ?w

45:ご冗談でしょう?名無しさん
15/01/23 07:15:34.62
胴元がEPRソースで、プレーヤーがAliceとBobで、エンタングルした量子がプレーヤーに配られるとする。
これが、ゲームの設定だと、誰もベルの不等式が破れるか判断できないんだよな。

46:ご冗談でしょう?名無しさん
15/01/23 12:21:11.36
アリスとボブは、どう測定しても、それぞれ、up,downが半分半分になるんだよな。

47:ご冗談でしょう?名無しさん
15/01/23 14:54:08.81
EPRソースは人間じゃないから胴元になれないとか、そんなレベルのこと考えてる訳か

48:ご冗談でしょう?名無しさん
15/01/25 08:28:12.48
P(a,b) = ∫ dλρ(λ)A(a, λ)B(b, λ)について、
λを共通原因とした定式化を行ったものである。
A,Bは、それぞれ、観測結果を表現した関数であり、Aについては、aのみから、Bについては、bのみから、決定される。

49:ご冗談でしょう?名無しさん
15/01/25 18:03:37.63
>>48
>A,Bは、それぞれ、観測結果を表現した関数であり、Aについては、aのみから、Bについては、bのみから、決定される。

A,Bは、それぞれ、観測結果を表現した関数であり、Aについては、aとλのみから、Bについては、bとλのみから、決定される。これは、局所性の条件である。

50:ご冗談でしょう?名無しさん
15/01/27 08:11:51.70
Δ = P(b,c)
∠bc=90°
とする。

1 + Δ ≥ |P(a,b) - P(a,c)|
P(a,b) =-cos(θ)ならば、P(a,c)=sin(θ)
ここで、
ベルの不等式が破れないとするなら、
Δ≠0
ベルの不等式が破れるとするなら
Δ=0

51:ご冗談でしょう?名無しさん
15/01/27 13:08:41.21
だから何

52:ご冗談でしょう?名無しさん
15/01/27 18:28:25.17
Δ≠0というのは、物理的にあり得ない。

53:ご冗談でしょう?名無しさん
15/01/27 19:50:41.59
算数の宿題ですか?

54:ご冗談でしょう?名無しさん
15/01/27 20:23:33.85
いいえ、違います。

55:ご冗談でしょう?名無しさん
15/01/27 23:11:55.93
先日、テレビ番組 『金スマ』 のゲストは高田純次だった。
あの、番組は比較的、波乱万丈の人生を送って来た人を取り上げてるケースが殆どである。
番組のナレーションでは一番この番組に似合わない男だ!などと言っていたが、とても、あの番組にふさわしい男だと思った。
まあ、人の人生なんて殆どが波乱万丈なんだろうけどね。
順風満帆で挫折やコンプレックスを知らずに生きてきた人など殆どいないか、いても、ほんの一握りの人間だけだと思っている。
それに、逆に、それらを体験せずに人生を過ごしてしまった人は、ある意味不幸と言えるんじゃないだろうか?
だって、人生って長いし、楽しいことよりも断然、苦しいことの方が多いから。
それにしても、彼のリアル感の無い超適当に感じさせる面白い言動は頭の回転の速さゆえなのだろう?
だが、彼は適当男どころか、物凄く責任感のある真面目な人だと思えた。
そして、彼は人生とは自分の思い通りになどいかないものだ!と達観してる様に感じさせる。
それは、きっと辛くて悲しい幼少期を過ごした経緯があるからなのだろう?
彼ほど常に自然体で魅力的な芸能人は少ないんじゃないだろうか?
だって、自分の好感度を上げようなどと言う、くだらないことは全然しないから。
そういう達観してると言うか、悟ってるとさえ感じられるところが好なんだよね。
私も彼の様な生き方をしたいと思ってはいるのだが、全然できずにいるけど。

56:ご冗談でしょう?名無しさん
15/01/28 04:01:56.41
Δ = P(b,c)
∠bc=90°
とする。

1 + Δ ≥ |P(a,b) - P(a,c)|
P(a,b) =-cos(θ)ならば、P(a,c)=sin(θ)
ここで、
ベルの不等式が破れないとするなら、
Δ≠0
ベルの不等式が破れるとするなら
Δ=0

57:ご冗談でしょう?名無しさん
15/01/28 04:02:47.98
だから何

58:ご冗談でしょう?名無しさん
15/01/28 04:03:29.18
Δ≠0というのは、物理的にあり得ない。

59:迺kでしょう?名無しさん
15/01/28 04:03:56.91
算数の宿題ですか?

60:ご冗談でしょう?名無しさん
15/01/28 04:04:31.83
いいえ、違います。

61:ご冗談でしょう?名無しさん
15/01/28 21:49:21.46
ベルの不等式を破らないということは、物理的にあり得ないということだな。

62:ご冗談でしょう?名無しさん
15/01/29 06:00:14.91
今までの常識とは、真逆の結論

63:ご冗談でしょう?名無しさん
15/01/29 09:32:46.88
さすがハッタリw

64:ご冗談でしょう?名無しさん
15/01/29 09:38:57.74
>>61
どんな状況でも必ずベル不等式は破れると言うこと?

65:ご冗談でしょう?名無しさん
15/01/29 12:08:02.80
>>64
素晴らしいこと聞くね。
そういうことだよ。
ただし、一様分布の場合は、ベルの不等式は絶対に破らない。

66:ご冗談でしょう?名無しさん
15/01/29 13:05:58.35
>>65
どんな状況でも必ずベル不等式は破れると言うこと?→そういうことだよ。

一様分布の場合は、ベルの不等式は絶対に破らない。


自己矛盾ご苦労さんw

67:ご冗談でしょう?名無しさん
15/01/29 13:06:36.10
>>65
どんな状況でも必ずベル不等式は破れると言うこと?→そういうことだよ。

一様分布の場合は、ベルの不等式は絶対に破らない。


自己矛盾ご苦労さんw

68:ご冗談でしょう?名無しさん
15/01/29 13:07:11.37
>>65
どんな状況でも必ずベル不等式は破れると言うこと?→そういうことだよ。

一様分布の場合は、ベルの不等式は絶対に破らない。


自己矛盾ご苦労さんw

69:ご冗談でしょう?名無しさん
15/01/29 13:37:10.39
>>65
物理的にベル不等式は破れる状況もあるし、破れない状況もあるということ

つまり、

ベルの不等式を破らないということは、物理的にあり得ない

が偽と言うことを言っていますね

70:ご冗談でしょう?名無しさん
15/01/29 19:17:16.36 t99TAcXR
☆☆☆☆☆
☆ 自民党、グッジョブですわ。 ☆
URLリンク(www.soumu.go.jp)

☆ 日本国民の皆様方、2016年7月の『第24回 参議院選挙』で、改憲の参議院議員が
3分の2以上を超えると日本国憲法の改正です。皆様方、必ず投票に自ら足を運んでください。
そして、私たちの日本国憲法を絶対に改正しましょう。☆

71:ご冗談でしょう?名無しさん
15/01/29 20:31:06.27
もっと、骨のあるツッコミがあると思ったが、大したことなかったな。

72:ご冗談でしょう?名無しさん
15/01/29 22:34:50.91
書いてることが適当すぎ

73:ご冗談でしょう?名無しさん
15/01/29 23:08:04.13
>>72
頑張って突っ込め

74:ご冗談でしょう?名無しさん
15/01/30 10:39:55.18
ベルの不等式を物理法則と思ってるだろ

75:ご冗談でしょう?名無しさん
15/01/30 20:16:39.41
一様分布の場合
Δ = P(b,c)
∠bc=90°
とする。

1 + Δ ≥ |P(a,b) - P(a,c)|
P(a,b) =-1+2θ/πならば、P(a,c)=-1+(2θ+π)/π
ここで、
ベルの不等式が破れないとするなら、
Δ=0
ベルの不等式が破れるとするなら
Δ≠0
あら、前と逆になっちゃった

76:ご冗談でしょう?名無しさん
15/01/31 19:05:34.96
物理的にあり得るのは、Δ=0 のみ

77:ご冗談でしょう?名無しさん
15/01/31 20:15:57.91
なんでP(b,c)が0じゃなきゃならないんだよw


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch