場の量子論 Part9at SCI
場の量子論 Part9 - 暇つぶし2ch745:ご冗談でしょう?名無しさん
14/04/25 09:28:49.70
>>744
>1.は演算子積展開(OPE:Wilson)になるという事でしょうか?
その用語は知らない。

考えてるフォック空間の基底がn点関数であることが完全性ということ:
フォック空間が全体のヒルベルト空間で、n点関数はその基底

746:ご冗談でしょう?名無しさん
14/04/25 10:41:00.77
>>745
>フォック空間が全体のヒルベルト空間で、n点関数はその基底
Fock基底(生成,消滅演算子から→漸近場φ(x)で今は表示。){1点関数,2点関数,..,n点関数,...∞点関数}(今はn=0,∞)と
いうような基底をとるんですね。(今は∫d^4x内にあり、積分されているが、基底となる。)
今、問題にしている事で、基底に{φ(x1),φ(x1)φ(x2),...,φ(x1)~φ(x∞)}を取る事は理解できた気がします。
その議論の延長上で一般的に演算子が展開できるOPEが関係するのかなと思いました。
(理由としては一般的な完全系を用いて局所演算子の積を展開するため。)
→これも、ただの基底による展開であると言えば、それまでですが。

747:ご冗談でしょう?名無しさん
14/04/25 11:21:06.42
>>746
話が難しくなるので適当に聞いてください。

展開自体はその通りなのだが、場の理論のような無限自由度の場合完全性が成り立つかどうか疑問なのです。
自由場、相互作用場、漸近場の順で場の演算子を考えるけどお互いの関係は一般的は分からない。
相互作用場を自由場の演算子で形式的は展開できるけど、それを足し合わせたものは元には戻らない:
関数をフーリエ展開はできるがフーリエ級数は元の関数とは一致しない。
これは量子力学と違うところです。

748:ご冗談でしょう?名無しさん
14/04/27 09:40:05.38
柏さんの演習 場の量子論を読んだけど、次のGrassmann積分の構成法で
∫dξξ=1 => 最後には虚時間ではないフェルミオン経路積分(一般的)
∫ξdξ=i => 最後には有限温度でのフェルミオン経路積分(柏)
という結果になっていると思うが、この定義(スタート地点)の違い
で2通りの経路積分が導出されたという結論でいいのだろうか。

749:ご冗談でしょう?名無しさん
14/04/27 10:29:37.59
>>748
違うと思うけど、フェルミオンの積分とユークリッド化は別の話
ユークリッド化は時間を虚数時間に変換する

750:ご冗談でしょう?名無しさん
14/04/27 10:51:04.42
>>749
AP:反周期境界条件(フェルミオンの場合)が定義からトレース計算時に自然に出てくれば、
有限温度の場の理論になるって事かなー?

751:ご冗談でしょう?名無しさん
14/04/27 11:52:14.94
>>750
それも違うと思う。
ユークリッド化のメリットはボソンの場合、
1.不変デルタ関数の計算が簡単になる
2.母関数の指数の肩がフレネル積分からガウス積分になる
といったところ、フェルミオンの場合はよくわからん。

752:751
14/04/27 12:16:29.53
補足
境界条件については、最終的に十分大きな領域を考えて境界条件によらない量を考えてる。
有限温度についても同様。

753:ご冗談でしょう?名無しさん
14/04/27 13:47:31.19
>>751
いろいろとありがとうございます。
柏さんの場合はユークリッド化を導入する前に反周期を用いて
フェルミオンの経路積分形式を書いてあり、仰る通り有限温度系
への移行はユークリッド化と同様の事を行えばいいのですが。
(1)Grassmann数を用いた演算の定義は独立してるはず
(2)フェルミオン経路積分(Dirac場)の構築には反周期性は本質的には関係ない(他文献)
(3)柏さんの場合には後のユークリッド化を見込んでの反周期性を取りこみ、後に虚時間にするだけ
だったので、(1)、つまり∫ξdξ=iは(3)の仕込みだと考えたのです。
Grassmann代数の構成には任意性があるので、条件を満たしていればいいだけなので、どこまで(3)に関わっていたのかと。(他の文献とも定義がちょっと違ったので。)
(2)を考えると、得られる形式が虚時間に置き換える一歩手前の有限温度のフェルミオン場経路積分形式なんですよね。

754:ご冗談でしょう?名無しさん
14/04/27 20:27:39.61
>>753
グラスマン数の積分の定式化の比較については他の人に聞いてください

755:ご冗談でしょう?名無しさん
14/05/02 15:24:27.02
>>753
補足
グラスマン数の積分について詳しく書かれているのは>>665,667

756:ご冗談でしょう?名無しさん
14/05/18 16:05:48.47
非可換ゲージ理論でcolor rotationのカレント計算が載っている本や資料等は
ありますでしょうか?
ゲージ場の量子論Iの本でカレントのみが載っているのですが、検算がうまく
できないので他の資料があれば。

757:ご冗談でしょう?名無しさん
14/05/24 11:18:48.21 hZUOICBM
スレリンク(rikei板:723番)
  ↑  ↑  ↑  ↑  ↑ 

758:ご冗談でしょう?名無しさん
14/06/04 20:52:15.34
意味不明な質問だったのね

759:ご冗談でしょう?名無しさん
14/06/09 21:27:08.30
柏さんの演習 場の量子論 って
URLリンク(www.saiensu.co.jp)

> 臨時別冊・数理科学として刊行された前著に新たな問題および最近の参考文献も加えて単行本化.
これだけなんでしょうか?
旧版の演習問題解答にちょこちょこあった誤植なんかは訂正されてるんでしょうか?
例. 2章問題1.1 ハンケル関数の右上添字等

760:ご冗談でしょう?名無しさん
14/06/10 07:53:03.13
>>759
ここはぺスキン厨がうるさいのでこちらへどうぞ
スレリンク(sci板)

761:ご冗談でしょう?名無しさん
14/06/10 23:25:12.28
誘導ありがとうございます。
そちらで聞いてみます。


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch