14/12/19 06:17:56.19
「奇置換全体が群になる」という>>1の主張そのものが、
>>1の言うところの「ナンセンス以外の何物でも無い」のであり、
墓穴を掘りまくる>>1なのであった
726:132人目の素数さん
14/12/19 19:32:05.25
/:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::ヽ
/:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://ヽ:::::::::::::::|
l:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::// ヽ::::::::::::::l
l:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::/:::「'ヽ:::::::::::// ヽ:::::::::::|
|::::::::::::::::::::::::::::::::::::::::::::::::::::::::::ノl:::ノ l:::::::/ ヽ::::::::|
ノ:::::::::::::::::::::::::::::::::::::::::::::::::::::/ ゙゙ ノ:::/ ,,;;;;;;,, ,,,,ヽ:::::l
):::::::::::::::::::::::::::::::::::::::::::::::/ ノ/ __,'''i: ('''__):::l
)::::::::::::::::::::::::::::::::::::::::::::::::::/  ̄ ̄ン:. :「 ̄`ヾ
1:::::::::::::::::::::::「 `┤l:::::::::::::::::l  ̄ , ヽ ̄ l
`l:::::::::::::::::::::ヽ :l li:::::::::::::/ ヽ /´ `l |
ヽ::::::::::::::::::::::\_」 lヽ::::/ .l !:-●,__ ノ /
ノ:::::::::::::::::::::::::::ノ | l `゙゙ i ,,;;;;;;;;;;;;;;;;;;;;, /ヽ
,/ ヽ::::::::::::::::::::::( l l::::::::.. /.:''/´ ̄_ソ / `ヽ
ヽ:::::::::::::::ヽ | l:::::::::::... /::// ̄ ̄_ソ / \ ヴッ!!
ヽ:::::::\| l::::::::::::::::... / :::.ゝ` ̄ ̄/ / ヽ
ヽ:::l l:::::::::::::::::::..  ̄ ̄;;'' / ヽ
l l;;;;;;:::::::::::::::.....;;;;............;;;;;;''ノ l
l l '''''''''''''''''''''''''''''''''''''' ̄l | |
URLリンク(www.youtube.com)
727:132人目の素数さん
14/12/20 00:06:08.46
>>725
そもそも恒等置換が偶置換ではどうしようもないな。
単位元の無い群なんて有り得んので。
728:132人目の素数さん
14/12/20 00:34:35.77
俺様群構造なのが前提でしょ
729:132人目の素数さん
14/12/20 05:37:24.31
どうも、スレ主です
>>712-728
あなたを、粘着くんと仮に呼ばせてもらうが、ご苦労さん
君のおかげで、ガロアスレ初の1000達成になりそうだ>>536
IDが出ないのが残念だ
IDが出れば、君の1000達成に対する貢献が、よりいっそうはっきりするだろうが
さて、再度原点に戻る
”あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。”>>468
これは、”どんな有限集合にも群構造が入るという一般論があるから、そりゃ群構造は入るけど。 ”>>467
"残りの、60の奇置換全体にもA5と同じ群構造が入るんだね
S5=A5+A5(12)
偶置換A5と奇置換A5(12)は、同じ群構造だと ">>466 という流れ
つまり、>>466→>>467→>>468
偶置換A5と奇置換A5(12)は、同じ群構造→どんな有限集合にも群構造が入るという一般論?→「要素が60個の集合には5次交代群と同型の群構造が入る」?
で、”どんな有限集合にも群構造が入るという一般論”なんて奇異だし
次の「要素が60個の集合には5次交代群と同型の群構造が入る」は、おかしいよと
730:132人目の素数さん
14/12/20 05:43:19.29
>>729 つづき
要素が60個の集合(普通は位数60という)という限定だけでは、5次交代群に限定できないだろうよ
それは、>>482に書いた通り URLリンク(www.akanekodou.mydns.jp)
位数 119までの群の分類 Red cat 平成23年10月3日 「17 位数 60 の群」P57とその結論P63 にある
もっと詳しく引用すれば>>711
G =C60 またはG=C2xC30またはG=D60 またはG=Q60
またはG=C3xD20 またはG=C3xQ20 またはG=C5xD12 またはG=C5xQ12またはG=C5xA4 またはG=D6xD10 またはG=A5
またはG = <a,b|a^15=b^4=1, bab^-1=a^2> またはG = <a,b|a^15=b^4=1, bab^-1=a^7>
だ
731:132人目の素数さん
14/12/20 05:56:09.71
>>730 つづき
だから、半分正解と>>482に書いた
>>543
線形代数と群 (共立講座 21世紀の数学) (下記)P212 に
「Gを位数60の単純群とするときGはA5と同型である」(系7.42)とあります。”単純群”に限定すれば、正解ですよ
URLリンク(www1.ocn.ne.jp)
共立講座 21世紀の数学
URLリンク(www.amazon.co.jp)
線形代数と群 (共立講座 21世紀の数学) 単行本 – 1998/9/1 赤尾 和男 (著)
と
いま読み返すと、URLリンク(www.akanekodou.mydns.jp) 位数 119までの群の分類 Red cat のP63
「17.2 Sylow 5-部分群が正規でないとき」にその証明があるね
φ : G → S6の置換表現から、A5を導く
732:132人目の素数さん
14/12/20 06:10:18.32
>>729 補足
"残りの、60の奇置換全体にもA5と同じ群構造が入るんだね
S5=A5+A5(12)
偶置換A5と奇置換A5(12)は、同じ群構造だと ">>466
と書いたが、粘着くんが>>467で書いてくれたように、”奇置換全体は、置換の合成では群にはならない”
奇置換全体は、群じゃない
φ:A5(12)→(12)A5(12)=A5
という全単射で、群構造を定めることができると
”群構造が入る”という言い方は、不適切だったと反省している
”群構造を定めることができる”が、適切だったと
それで、ミスリードされた粘着くんが
”あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。”>>468 と
でも、よく考えると、代数構造の場合には、”xx構造が入る”という表現は良くなかった
733:132人目の素数さん
14/12/20 06:16:34.06
>>732 つづき
代数構造とは? そもそも、数学における構造とは?
URLリンク(ja.wikipedia.org)
数学的構造
数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。
集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。
数学の扱う対象は、基本的には全て構造として表すことができる。
構造の例
順序的構造
代数的構造
位相的構造
734:132人目の素数さん
14/12/20 06:23:46.24
>>733 つづき
代数構造にもどる
URLリンク(ja.wikipedia.org)
数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。
代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。
また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。
すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。
逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。
なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。
後者は、代数系の代数構造とも呼ばれる。
現代では、代数学とは代数系を研究する学問のことであると捉えられている。
代数的構造の例
(詳細は省略する。マグマ、擬群、Loop、半群、モノイド、群、アーベル群などがあがっている。)
735:132人目の素数さん
14/12/20 06:40:59.73
>>734 つづき
で、位相的構造。下記のように、しばしば「位相を入れる」という。
URLリンク(ja.wikipedia.org)
位相空間 (位相的構造から転送)
数学における位相空間(いそうくうかん、topological space)とは、集合に要素どうしの近さや繋がり方に関する情報(位相、topology)を付け加えたものである。
この情報は関数の連続性や点列の収束といった概念の源といえる。
ある集合に位相を与えて位相空間とみなすことを、しばしば「位相を入れる」という。
位相空間論は位相空間の諸性質を研究する数学の分野である。
順序的構造でも、「順序を入れる」はけっこういうみたい
URLリンク(ja.wikipedia.org)
順序集合(順序的構造から転送)
数学において順序集合(じゅんじょしゅうごう、英: ordered set)とは 「順序」の概念が定義された集合の事で、
「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。
ハッセ図
V 上に以下の順序を入れる事でV を半順序集合とみなせる
736:132人目の素数さん
14/12/20 06:46:43.25
>>735 つづき
でも、よく考えると、代数構造の場合には、”xx構造が入る”という表現は良くなかった>>732。あまり使わない表現だったね
それで、ミスリードされた粘着くんが
”あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。”>>468 と
すまんかったね、粘着くん
スレ主にミスリードされないように、よく勉強するんだよ、粘着くん
では
737:468
14/12/20 06:55:31.45
>>736
いや、別に間違ってないよ。
>>1は、トリビアルな話を意味ありげに書いた、それだけだ。
より不幸なのは、>>1はそれをトリビアルだと思ってはいない。
738:132人目の素数さん
14/12/20 07:17:36.62
(1) 奇置換全体の集合は合成の置換で群になってない
(2) 全単射 φ:A5 → (奇置換全体) を適切に定めて奇置換全体に
新しい群演算を定義すると、奇置換全体はその群演算のもとで
A5と同じ群構造になる ← ナンセンス・トリビアル・奇異
(3) 全単射 Ψ:C60 → (奇置換全体) を適切に定めて奇置換全体に
新しい群演算を定義すると、奇置換全体はその群演算のもとで
C60と同じ群構造になる ← ナンセンス・トリビアル・奇異
スレ主は(3)を「ナンセンス・トリビアル・奇異」と評し、
その一方で(2)には「意味がある」と思っている(>>466)。
実際には、(2)も(3)も等しく「ナンセンス・トリビアル・奇異」なのである。
すなわち、スレ主は何も分かってない。
739:132人目の素数さん
14/12/20 08:11:44.78
>>734 補足
”あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。”>>468
を、ブルバキ流代数的構造から考えると、”xx構造が入る”と言い出すと、群に限定する必要もない
マグマ、擬群、Loop、半群、モノイド、群、アーベル群などなど
なんでもありだよな
だから、「Gを位数60の単純群とするときGはA5と同型である」(系7.42)とあります。”単純群”に限定すれば、正解ですよ >>731
という話になる。つまり、”単純群”としなければ、数学的にはあまり意味がない陳述だよと
では
740:468
14/12/20 08:17:54.49
>>739
貴方の言い分は>>1がつまらないことをしているという私の主張を補強しているように思える。
741:132人目の素数さん
14/12/20 09:37:55.81
>>739
>つまり、”単純群”としなければ、数学的にはあまり意味がない陳述だよと
スレ主は糖質か?それともコミュ症か?
そりゃ確かに意味のない陳述だろうよ。
もともとの>>466が意味の無いナンセンスな陳述であり、その陳述に対して
「お前のやってることはこのくらいトリビアルな話なんだぞ」って
指摘してるだけなんだから。
ほれ、よく読み返してみろ。
>”あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。”>>468
この一文のどこをどう読めば「わたしの言ってることには意味がある」と読めるんだ?
どう見ても「お前の発言内容には意味が無い」っていう指摘の文章に過ぎないだろうが。
だから意味がなくて当たり前なんだよ。
そして「意味が無い」のは もともとのお前の>>466の文章なんだよ。
いい加減にせえやアホンダラ。
742:132人目の素数さん
14/12/20 09:55:04.29
ガロア群が離散無限群や連続群となるような「体の拡大」に相当するものって何なのでしょうか?
743:132人目の素数さん
14/12/20 10:18:35.40
無意味な>>466に粘着してるのはどう見ても>>1
744:132人目の素数さん
14/12/20 11:36:10.89
アハハ、双射で演算を好き放題に入れるなら、そりゃ要素が何で出来ていても群同型になる罠www
745:132人目の素数さん
14/12/20 12:10:39.76
糖質を正常扱いしてドヅキ回してるおまいらも大概だな
746:132人目の素数さん
14/12/20 13:47:08.76
>>744
せいぜい>>503くらいの意味はあるかな。
ただ、HはGの部分群ならばなんでもよい。Hが単純群である必要はない。HがGの正規部分群である必要もない。
747:132人目の素数さん
14/12/20 15:25:12.66
数学やってる人って杓子定規な人が多いから
相手が糖質かどうかで対応を変えられないんだよ
748:年末に必死だなw
14/12/20 17:40:35.32
運営乙
749:132人目の素数さん
14/12/20 18:19:55.63
スレ主です
URLリンク(www.galois.ihp.fr)
Supports de présentation | Bicentenaire Galois 2011 (ガロア誕生200年)
面白そうなところを
Galois’ version of Galois theory - Harold Edwards 英
URLリンク(www.galois.ihp.fr)
La théorie de Galois dans l’école de Göttingen (Noether, Artin…) – Colin McLarty
Galois theory in Gottingen (Noether, Artin. . . .) 内容は英文で下記
URLリンク(www.galois.ihp.fr)
Dedekind, Frobenius and the beginning of representation theory : cooperation and conflicting views – Leo Corry 英
URLリンク(www.galois.ihp.fr)
Algorithmic aspects of the Galois theory in recent times – Michael Singer
URLリンク(www.galois.ihp.fr)
( Tannakian philosophy 淡中圏関連か URLリンク(ja.wikipedia.org) )
Grothendieck et la théorie de Galois – Tamas Szamuely 仏語ですが
URLリンク(www.galois.ihp.fr)
( Categories tannakiennes は上記。(Tamagawa, Mochizuki)も出てくる )
Équations et substitutions avant Galois : Lagrange et Cauchy – Massimo Galuzzi 仏語ですが
URLリンク(www.galois.ihp.fr)
URLリンク(www.galois.ihp.fr) Welcome 2011 is the bicentenary of the birth of a leading figure in the history of mathematics: Évariste Galois.
URLリンク(www.galois.ihp.fr) 動画サイト
750:132人目の素数さん
14/12/20 18:28:33.18
>>1は逆写像の理解も怪しいのにより難解な事柄に関するリンクをベタベタ貼っている
751:132人目の素数さん
14/12/20 18:33:02.60
>>750
「ムシャクシャしたからやった。反省はしていない。」
だろうなw
752:132人目の素数さん
14/12/20 18:33:36.18
>>749 補足
だいたいこれが、スレ主スタイル
2ちゃん板で、数学記号が使えない。図は描けない。アスキー文字ベース
基本は、引用と引用先のURL
それで、1レスが1~2KBになるので、500KB制限にかかって、1000は達成できない
753:132人目の素数さん
14/12/20 18:35:09.55
氏ねよ屑
754:132人目の素数さん
14/12/20 18:53:46.03
このリンクべたべた貼りは、まさに>>708
755:132人目の素数さん
14/12/20 18:55:17.05
どうだ凄いだろう俺は!
756:132人目の素数さん
14/12/20 19:29:28.41
>>741
スレ主です
粘着くんが、必死で言い訳しているのがよくわかるよ
>>”あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。”>>468
>この一文のどこをどう読めば「わたしの言ってることには意味がある」と読めるんだ?
いやいや、「要素が60個の集合には5次交代群と同型の群構造が入る」という一文に、粘着くんの「おれはこれだけ数学の知識がある」と読んだんだ
で、粘着くんもそれを受けて、「おれは正しい」と叫んでいたね
例えば、>>561だ
でも、スレ主は、粘着くんの「おれはこれだけ数学の知識がある」を否定しているんだ
数学を”知ったか”しているけど
所詮、同じ穴のむじなじゃないかと? どうよ?
757:132人目の素数さん
14/12/20 19:33:03.06
>>756 補足
まあ、粘着くんがんばって
あと、少しで初の1000達成だよ
君のお陰だよ
758:132人目の素数さん
14/12/20 20:13:59.16
スレ主以外は、少なくともあるレベルの数学を、正しく理解している。
スレ主は、ごく初歩的なことも覚束無いから、同じ穴の狢ではない。
さらに、S5の奇置換全体の集合にA5と同じ群構造が入るという無意味な主張に”粘着”しているのは他ならぬスレ主。
759:132人目の素数さん
14/12/20 20:14:39.24
>>756
真面目な話、意味がわからない。
760:132人目の素数さん
14/12/20 20:24:35.13
>>756
>いやいや、「要素が60個の集合には5次交代群と同型の群構造が入る」という一文に、粘着くんの「おれはこれだけ数学の知識がある」と読んだんだ
言い訳乙。
数学の知識を見せびらかしているのなら、「トリビアルな話だよ」とは書かず、
さも意味のある内容であるかのように誇示する。しかし、実際には
「意味のない話なんだよ」と言っているのだ。つまり、お前の勝手な誤読だ。
数学以前に国語の問題だなこりゃw
>で、粘着くんもそれを受けて、「おれは正しい」と叫んでいたね
お前が「その主張は間違っている」と反論したからだろう。実際には正しいのに。
トリビアルな話であることは、その主張が間違っていることを意味するわけでは無いんだぞ。
ただ単に「くだらない話だ」といっているだけなんだぞ。
・スレ主がナンセンスな発言をする
・「その発言はナンセンスだよ」とツッコミが入る
・「いやいや、その発言は間違っている」とスレ主が反論する
・「いやいや、オレの発言自体は正しいだろ」と再反論が入る
こういう流れだよ。つまり、お前がトンチンカンな受け答えをしてるだけなんだよ。バーーカ。
>でも、スレ主は、粘着くんの「おれはこれだけ数学の知識がある」を否定しているんだ
そういう意図が無いレスに対して勝手な解釈をして「否定」したところで、
もともとのレスに対しては何の反論にもなってない。ナンセンス。
スレ主はコミュ症か糖質か?
で、スレ主の>>466が「ナンセンス・トリビアル・奇異」であることは、スレ主も認めるの?
肝心なのはここだろ?そこから始まった話なんだから。
761:132人目の素数さん
14/12/20 20:33:12.39
数学でかなわないスレ主が何とか話をはぐらかそうと必死でワロタ
762:132人目の素数さん
14/12/20 22:57:15.11
なにもかもでっちあげでうごいているようだ
運営乙
763:132人目の素数さん
14/12/20 23:51:50.48
x^29+7x^4+213x+1==0 のガロア群をもとむ