14/09/28 06:38:31.85
>>53 つづき
ども、スレ主です
>例えば下記 hiroyukikojima氏ご推奨の草場公邦では、P157に同様の記述がある
草場公邦より
(i,j,・・・,k)で巡回置換を表すとする
i,j,k,l,mを5個の相異なる文字とする
次の4式が肝要
(i,j,k)^-1=(k,j,i)・・・・・・・(1)
(i,j)(k,l)=(i,j,k)(k,i,l)・・・・(2)
(i,j)(i,k)=(i,j,k)・・・・・・・(3)
(i,j,k)=(i,l,k)(i,m,j)(k,l,i)(j,m,i)=(i,l,k)(i,m,j)(i,l,k)^-1(i,m,j)^-1・・・(4)
(積は左から読む)注)矢ヶ部巌と同じ。積の扱いが逆の本もあるので注意
注)^-1:エクセル流のべき表現で、-1のべきを表す。置換の場合は逆を表している。分かると思うが念のため。アスキーしか使えないから不便
式(2)(3)は、交代群Anが巡回置換(i,j,k)たちで生成されていることを示す。
(矢ヶ部などでは長さ3の巡回置換で生成されているなどと表現している。)
(もっとかみ砕けば、交代群Anは偶置換から成り、(2)は異なる4文字の偶置換、(2)は異なる3文字の偶置換が、長さ3の巡回置換で表現できると)
式(4)は、(i,j,k)が交換子であることを示す。
交代群Anで、nが5以上であれば、5個の相異なる文字を含むので、式(1)から(4)はすべて成立する。
このあと、草場公邦は、Anに正規部分群Nがあれば、実はN=Anであることを導く。
まあ、あとは草場公邦を見て下さい