14/11/23 07:21:11.33
>>555つづき
URLリンク(ja.wikipedia.org) 正規部分群
定義 (コピペによる文字化けご容赦。原文を参照ください)
群 G の部分群 N が正規部分群であるとは、共軛変換(英語版)によって不変、すなわち N の任意の元 n と G の任意の元 g に対して、元 gng-1 が再び N に属するときにいう。
任意の部分群について、以下の条件はいずれも今上げた正規性の条件に同値である。このため、これらの条件のどれかを正規部分群の定義としてもよい。
G の任意の元 g に対して gNg-1 ⊆ N が成り立つ。
G の任意の元 g に対して gNg-1 = N が成り立つ。
G における H を法とする左剰余類全体の成す集合と右剰余類全体の成す集合とが一致する。
G の任意の元 g に対して gN = Ng が成立する。
N は G の共役類の和集合である。
G 上定義された群準同型で N をその核に持つものが存在する。
最後の条件は正規部分群の重要性の一端を示すもので、ある群の上で定義される準同型写像全体の内部的に分類する方法を与えている。