14/10/26 14:10:21.02
>>416 つづき
1列目は、巡回群でC5
で、これは、URLリンク(www.isc.meiji.ac.jp)
2007 年度卒業研究 5次方程式 高校生に5次方程式の解の公式が存在しないことを教える試み 理工学部数学科 金沢雄太 2008 年
このC5は、P7の十二面体の図の一番手前に見えている面だ
1列目と3列目で、二面体群D5(下記)をつくる
URLリンク(ja.wikipedia.org)
二面体群(にめんたいぐん、英: dihedral group)とは、正多角形の対称性を表現した数学的対象である。
より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。
そのような合同変換は、回転と鏡映の二種類がある。
二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。
類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。
「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。