14/10/21 21:07:52.02
>>363
ありがとう。
数段レベル高そうな君が知らない様子なので多分無いのだと思う。
演算も抽象化してこれこれこういう目的を満すにはこういう特性がないと無理とかいう
演算自体も抽象化して評価できるような理論。
(そういうのがあったら可解になるにはどういう性質が追加する演算に必要なのかを知りたかった。)
多分ないのだと思う。かなり詳しそうな君が知らないみたな雰囲気だから無いのだと思う。
非常に助かりました。ありがとう。
366:132人目の素数さん
14/10/21 21:09:40.82
>>344 数学科の大学生を
ここ笑うとこ?
まともなのもちらほらいるみたいだが、
突然、厨房みたいなのがはしゃぐスレになってるな。
二十歳近辺までいってるなら、それこそ精神遅滞、知恵おくれだよ。
367:132人目の素数さん
14/10/21 21:12:06.42
>>366
おまえリアルで学部の学生知らないだろw
もしかして放送大学か?
368:132人目の素数さん
14/10/21 21:14:15.94
>>366ってスレ主みたいな性格してるなww
369:132人目の素数さん
14/10/21 21:14:56.01
数学科出がやっぱこのスレ多そうだね。
俺は数学科出じゃないけど親友が数学科だった。
高校までの数学と違いすぎて驚いたよ。
大学で高校までの数学に一番近いのは物理学科じゃないかと思う。
やってる内容はかなり高校数学の内容に近いよ。
370:132人目の素数さん
14/10/21 21:15:50.89
>>367
おいおい、放送大学の学生のほうが、スレ主よりはず~~~とマシだよw
371:132人目の素数さん
14/10/21 21:16:59.85
高校までの数学しか知らなくて、大学の数学の内容を知って
驚かななかった?大学1年のころに。
教科書をその親友にみせてもらったけど記号のだらけで読む気になれなかったのを覚えてる。
その親友の言うことには記憶が重要って言ってた。
定理を覚えてないとどうしようもないって。
372:132人目の素数さん
14/10/21 21:18:49.29
>>369
物理の人は具体的計算、数学的論証よりもモデルとした物理系がこうだから数式モデルもこう振舞うはずという議論が好き。
373:132人目の素数さん
14/10/21 21:19:11.85
大学じゃなくて、学生によって性能まったく違うよ。
出てる大学で性能判断は無理だろ。成績トップとビリで性能差ありすぎ。
放送大学は知らんが自然界の法則だと放送大学のトップの性能のやつはかなり優秀なはずだよ。
そこらの大学のザコよりは。
374:132人目の素数さん
14/10/21 21:26:01.43
> 二十歳近辺までいってるなら、それこそ精神遅滞、知恵おくれだよ。
599 :現代数学の系譜11 ガロア理論を読む:2012/03/11(日) 22:57:45.56
>>598
>一応忠告してやる。いい年して、リアルで”おいら”とか”じゃん”とか使うなよ。
忠告ありがとうよ。当然だよ。”おいら”なんて、あくまで2ちゃんねる用語だよ。”私は”じゃ硬すぎるだろ
>>あんたの年齢45以上だろ?
当然だわな。書いている内容見ればある程度年齢は分かるだろうよ
ところで、こちらから一つ忠告しておいてやる
ここで、おいらに突っかかってきても、返り討ちになるだけだぜ。そして、猫氏とKummer氏と3人から袋叩き。馬鹿を晒して、他のスレでの発言力にも影響するだろうよ・・
375:132人目の素数さん
14/10/21 21:26:57.20
ガロア理論とかけはなれるけど、自然界の法則で性能は分布しちゃうんだよね。
はいったときの成績が似かよってても4年たつあいだに正規分布的は分布で性能ばらつく。
1位の性能と2位の性能はかなりの性能差、2位と3位の差は一般的に1位と2位の差より少ない。
雑魚連中はほとんど差がない。激烈に性能が劣る人もできてしまうのが一般的。
これは人の性能だけじゃなくて、山の高さとか、川の長さとか色々な自然界の特徴的な量がそうなってるらしい。
法則名もあって学生時代に教授から教えてもらったけど名前忘れた。
だから卒業大学で性能判断したら誤るよ。
4年間でもかなり性能差でてるし。卒業後時間がたてばたつほど性能にばらつきでるから。
とんでもない馬鹿が有名大学でててもいるよ。
仕事で何度もあったよ。有名大学卒のおバカ野郎に。
376:132人目の素数さん
14/10/21 22:21:41.06
スレ主のご高説w
377:132人目の素数さん
14/10/21 22:36:57.27
卒業大学で性能判断といえばスレ主は
東京大学理学部数学科卒業の現役経済学者にして、数学エッセイストのhiroyukikojimaの日記だということを強く意識するように!
とか
東大医学部卒業の三森明夫先生は
と書いているが何かコンプレックスでもあるのかな
出身(大学)と書くか卒業(大学)と書くかで性能判断ができちゃったりして
378:132人目の素数さん
14/10/21 22:46:56.92
有名大学出ると学歴気にならなくなるのが普通だと思うよ一般的に。俺もそうだし。
会社が旧帝大のトップクラス卒ばかりの会社にはいって同期とはなしたときに
同じレベルの大学卒だったからかもしれないけど、出身大学を気にしてるやつあまりいなかった。
同期でも酷いやつも多かった。本当に性能が抜きんでてるやつもいたけどそれは少数派だった。
普通は凡庸。いくら良い大学でてても。仕事面とか論理的思考力が特段すぐれたヤツは稀だったよ。
379:132人目の素数さん
14/10/21 22:55:24.32
スレ主は、ガロア理論は諦めて上から目線で自己語りを始めたようだw
380:132人目の素数さん
14/10/21 22:58:35.83
長文の大方はスレ主だな
特にトップクラスとか性能とか言ってるやつ
381:132人目の素数さん
14/10/21 23:51:38.17
上から目線だけは変わらんからなあ
何を話してもゲスな性格はいっしょ
382:132人目の素数さん
14/10/22 01:29:54.19
>>23
>一方で21世紀の世界では、旧帝大の本当のトップ数割は別として、数学ソフトやプログラミング できれば、それは武器だと思うんだよね
数学ソフトやプログラミングを駆使した結果がこの様w
383:132人目の素数さん
14/10/22 02:48:27.10
久々に現れたGAP君(>>357, >>360, >>361, >>365)
話の内容からして、おそらく >>366, >>369, >>371, >>373, >>375 もGAP君であろう。
GAP君とは、前スレで大暴れしていた荒らしである。
その書き込み内容から、GAP君本人のサイトが特定されてしまった恥ずかしい人(>>3)
ちなみに、GAP君はサイト(>>3)の方では極めて常識的な態度である。
スレ主が潜伏して長文を書いてるのだと勘違いしている奴がいるようだが、
それは違うだろう。スレ主じゃなくてGAP君だろう。
「本当に性能がいいやつは一握り」なんて、いかにもGAP君が書きそうな話題じゃないか。
前スレからそういうことばかり言ってたしな。
384:132人目の素数さん
14/10/22 07:02:41.43
トップクラスの性能と平均値クラスとの間にかなりの差ができるのが普通なのも自然界の法則なんだよ。
だから大多数は凡庸になるのが当然。
1番目と2番目の性能差と2番目と3番目の性能差...は対数グラフとかにプロットすると直線(だいたいなんでも対数グラフにプロットすると直線になるけど)になったはず。
はっきり覚えてないけど極端に差が違うのが一般的なんだよ。
これを知らない人が多いから卒業学校で性能わかるっていう勘違いしちゃう人が多くなる。
その大学に入学した当時の能力の平均の目安にしかならんよ。
どのグループでもトップのやつはかなりの性能を期待できる。2番目との性能差はかなりあることが多いから。
そうなる根拠は知らない。だいたいのものが性能つけて並べて性能差を比較するとこうなってるらしいよ。
だから大抵の場合俺らは大抵ドングリの背比べグループ(凡庸グループ)に属してる。
凡庸同士で性能を比較してもそれほど性能差はないの確率がもっとも高い。
385:132人目の素数さん
14/10/22 07:05:20.90
でも頭の構造がまったく違うっていうレベルの人もいるから。
凄いやつは凄いよ。学歴で評価するに値するキレキレの頭の持ち主もたしかに存在してる。
マネするのは不可能ってレベルに頭がまわるヤツもいるよ。
386:132人目の素数さん
14/10/22 07:11:13.40
>>383
>>366 は別人が書き込んだ内容
抜けてるのが >>378 これは俺が書いた。
ちなみに俺はスレ主ではない。
387:132人目の素数さん
14/10/22 12:08:30.80
GAP君でもスレ主でも誰でもいいが、クソなヤツが昔からこのスレに
複数いるってだけの話。匿名掲示板で同一人物かどうか探っても仕方ないしな
二人ともガロア理論についてまともな話はできないのも共通w
388:132人目の素数さん
14/10/22 19:09:03.69
GAP君←わかりやすい馬鹿
スレ主←馬鹿をごまかすためにwiki参照を多様する馬鹿
389:132人目の素数さん
14/10/22 19:10:28.52
スレ主って何歳?
390:132人目の素数さん
14/10/22 19:34:22.74
あれ?赤っ恥な勝利宣言を残して逃亡したGAP君(サル君)がまた来てるのか?
もう来ないんじゃなかったのか?
577 :132人目の素数さん:2014/09/17(水) 17:07:33.58
どうやらここのサルマネ君とは頭のできが違うかったようだ。
もっと時間かかるかと思ったけどできちゃったよ!
もっと頭の良いやつは腐る程いるけどな。
自分が大したことないって気付けるくらいは頭が良いって自覚してるところはお前らとは格が違うってことだな。
カス同士のドングリのせいくらべだけどな。
これでおまえらの馬鹿さ加減に気付けよ。自分とちゃんと向きあえよ。
お前のことなのに、俺を関係してお前が馬鹿すぎることから現実逃避しようとしてるところからして論理的思考力が欠如してるから。
深く理解できてるヤツが少なすぎるから資料でこれってのがなかなかない。
お前らは深く理解できてないからそんな資料作ることは不可能だけどな。
あばよ!クソスレ! クソの役にもたたなかった。
俺の方が検索能力高いし、まったく役にたつ情報くれなかったし。
ネットの情報だけで十分だった。
多く資料が途中をとばしてるので多くの資料を調べる必要があるけど。
一応費用0。本も購入してないし。
このスレにきて唯一良かったのがサルマネに苦労しまくって勘違いモードにはいってるサルマネもろくにできてない馬鹿にあおられてモチベーション上がったことくらいかな。
滅茶苦茶効率はあがった。
あばよサルマネに苦労しすぎて勘違いするくらい馬鹿すぎる大馬鹿野郎ども。
そしてこのスレでも勘違いしてない人は俺は好きだよ。
391:132人目の素数さん
14/10/22 19:35:24.95
(続き)
578 :132人目の素数さん:2014/09/17(水) 17:10:24.47
大馬鹿野郎は、俺で逃げれなくなったからな。
元々お前らが馬鹿すぎるって判断した理由はお前らが
1) サルマネしかしてないのに賢いつもりになってる
2) サルマネするのに自分が苦労しすぎて、一部の人にしかサルマネできないと勘違いしてること
からきてるから、今回たまたま予想以上にはやく俺が理解できてしまったけど。
これが遅かったとしても上の理由に関係ないからな。
俺の結果とお前らが馬鹿すぎることの関連はないし。
俺以上に賢いやつは腐る程いるからな。
お前らの能力がたいしたことないことくらい自覚しろよ。
お前らより格段にマシな俺ですら自覚してるのに。
579 :132人目の素数さん:2014/09/17(水) 17:13:05.82
モチベーションは上がったから、そこだけはありがとう。
目標がたっせいされたところで何の役にもたたないから趣味の中でも優先順位が低かったしな。
あばよ、勘違い大馬鹿野郎ども。
あばよ、このスレにいる、マシな人達よ。勘違いしてない人は俺は好きだよ。
俺は馬鹿嫌いだから基本的に。
あばよ!
392:132人目の素数さん
14/10/22 19:39:16.35
↑
GAP君のレスは非常に読みにくい日本語なので多少のエスパーは必要だが、頭の悪さが滲み出てることはよくわかる
393:132人目の素数さん
14/10/22 19:49:01.92
自分より頭が悪くて厚かましい人間を見つけて喜ぶのは程度の悪い娯楽
394:132人目の素数さん
14/10/22 20:08:48.03
スレ主のことか…
>自分より頭が悪くて厚かましい人間を見つけて喜ぶ
395:132人目の素数さん
14/10/25 19:33:46.60
>133 :132人目の素数さん:2014/08/30(土) 06:28:38.52
>>>132
>どうも
>遅レス失礼。いま土日しかレスできないので、約一週間ぶりですが
土曜日なのにスレ主さん来ないね、何かあったのかな?
396:132人目の素数さん
14/10/25 19:43:43.25
…………
397:132人目の素数さん
14/10/25 19:51:05.37
どうもスレ主ですっていうのがめんどくさくなって名無しになってるのかもね
398:きんぐ
14/10/25 19:53:26.29
呼んだかね?
399:132人目の素数さん
14/10/25 20:17:06.76
「代数学とはなにか」の前半ぐらいの知識を持てやスレ主
400:132人目の素数さん
14/10/25 21:47:37.59
そんなことより人の脳を読む能力を悪用する奴を消せ。
・・・とか、そのうち言い出しそうだな、スレ主
401:132人目の素数さん
14/10/25 22:32:13.44
名無しになって、といってもスレ主の文章はクセがあるんだよね。
スレリンク(math板:224-番)
スレを見ていたら
スレリンク(math板:73番)
があったから他の板にも書き込んでいたみたいだが。
402:132人目の素数さん
14/10/25 22:46:18.83
スレ主さん、きっと今日はお忙しいのだろうなwww
正規部分群くらいは理解できるようになったよねえwww
403:132人目の素数さん
14/10/26 02:32:41.19
> スレリンク(math板:224-番)
224の書き込みはネタだろうが229のレスで大栗さんの(よく大学院生にいう)言葉を
引用しているけれども
> スレ主に数学科大学院生なみの能力と知識を求めているなら筋違いだよ
URLリンク(planck.exblog.jp) のコメント欄より
大栗さんの書き込み
「大学学部レベルの数学の場合には、理論物理の勉強をしている人でも、
数学の定理の証明の内容をきちんとわかっておいたほうがよいと思います。
定理の証明を追うのには忍耐力が要りますが、それを養うのも勉強の一部です。」
の方が重要だね
404:132人目の素数さん
14/10/26 11:00:13.07
>>313-413
どうも。スレ主です。
おおぼけかましてました。正規部分群、スマソ
留守にしているうちに、盛り上がってますね
結構普段ROMの人いるですね
ところで、”スレ主は置換群を考えるとき、小物を動かしたりしないのか? ”>>95 などと、「数を数えるとときに、指を折って数えない?」に似ていると思ったが
素直に、忠告を聞いて、具体例から考えてみます
が、「ここから、ガロアが正規部分群の概念に気付いても不思議ではない
σによる変換が見やすい。これが、ガロア記法の大きな利点と考える 」>>232 ってところは、それほど間違っていない気がする
(ガロアが、生きていればどう言うか不明だが)
うまく、表現できないけど。ここは、その内うまく説明できるよう考えてみる
今週は、「指を折って数える」練習をします
405:132人目の素数さん
14/10/26 11:12:24.24
>>404
どうも。スレ主です
S5を具体的にガロア記法(1行記法>>232)で書いてみます
>>29から
URLリンク(www.isc.meiji.ac.jp)
2007 年度卒業研究 5次方程式 高校生に5次方程式の解の公式が存在しないことを教える試み 理工学部数学科 金沢雄太 2008 年
(P5-7の正12面体と交代群A5との関係を説明する図と文が良いと思ったが、木村俊一からのパクリだった)
ここのP7の十二面体の図を借りる(数学板では図が描けないので)
(P6 「(2) 面の中心を通る軸に関する回転4 × 6 = 24 通り」)
(12345) (25413) (53124) (34251) (41532) (43521)
23451 35214 24153 35421 43521 25413
34512 24531 45231 41253 25134 53124
45123 51423 53412 23514 31452 34251
51234 43152 31524 54132 54213 41532
406:132人目の素数さん
14/10/26 11:15:29.75
>>405
つづき
>(12345) (25413) (53124) (34251) (41532) (43521)
これ分かりますよね。面を表している。
その下が、ガロア記法による面の回転の置換を表している
407:132人目の素数さん
14/10/26 11:20:09.79
>>406
つづき
(P6 「(3) 頂点を通る軸に関する回転2 × 10 = 20 通り」)
(123) (145) (234) (135) (245)
23145 42351 13425 32145 14352
31245 52314 14235 52143 15324
(345) (134) (124) (125) (235)
12453 32415 24315 25341 13542
12534 42135 41325 51342 15243
注)同様に、括弧内が頂点、その下が、ガロア記法による回転の置換を表している
408:132人目の素数さん
14/10/26 11:23:38.69
>>407
つづき
(P6 「(4) 辺の中点を通る軸に関する回転1 × 15 = 15 通り」)
(25)(34) (14)(35) (14)(25) (12)(35) (12)(34)
15432 42513 45312 21543 21435
(23)(45) (13)(45) (15)(24) (15)(23) (13)(24)
13254 32154 54321 53241 34125
(24)(35) (15)(34) (12)(45) (13)(25) (14)(23)
14523 52431 21354 35142 43215
注)同様に、括弧内が辺、その下が、ガロア記法による回転の置換を表している
409:235
14/10/26 11:32:05.94
懲りてなかった。
半年くらい地道に勉強してから書き込んで下さい。
410:132人目の素数さん
14/10/26 11:56:36.44
地道に勉強せずに連投すれば荒しと見做します
411:132人目の素数さん
14/10/26 13:27:45.35
モリモリうんこ
412:132人目の素数さん
14/10/26 13:36:54.60
地道に、数字列の羅列で荒らしてるなあ~
413:132人目の素数さん
14/10/26 13:42:43.11
>>405-408
スレ主だと思うけど、小学2年くらいかね?
視野狭い。まだ、足し算とか九九とか、未消化。自分が、算数で教えられた世界がすべてだと。
まあ、小学校卒業のころに、戻ってきな。
414:132人目の素数さん
14/10/26 13:45:46.35
砲台でガロア理論専科の講義作れば飛びつくのが多そうだなw
415:132人目の素数さん
14/10/26 13:52:34.25
スレ主も、置換の羅列してるだけの馬鹿な割に、相変わらず
>これ分かりますよね。
とか、上から目線なゲスな性格はぶれてないなあ~
416:132人目の素数さん
14/10/26 14:00:15.36
>>408 つづき
>>227に戻る
メタサイクル群B5'
1列目 2列目 3列目 4列目
C5 (23)(45)(25) (25)(34) (24)(35)(25)
12345 13524 15432 14253
23451 35241 54321 42531
34512 52413 43215 25314
45123 24135 32154 53142
51234 41352 21543 31425
417:132人目の素数さん
14/10/26 14:07:51.03
ひい、ふう、みい
418:132人目の素数さん
14/10/26 14:10:21.02
>>416 つづき
1列目は、巡回群でC5
で、これは、URLリンク(www.isc.meiji.ac.jp)
2007 年度卒業研究 5次方程式 高校生に5次方程式の解の公式が存在しないことを教える試み 理工学部数学科 金沢雄太 2008 年
このC5は、P7の十二面体の図の一番手前に見えている面だ
1列目と3列目で、二面体群D5(下記)をつくる
URLリンク(ja.wikipedia.org)
二面体群(にめんたいぐん、英: dihedral group)とは、正多角形の対称性を表現した数学的対象である。
より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。
そのような合同変換は、回転と鏡映の二種類がある。
二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。
類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。
「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。
419:132人目の素数さん
14/10/26 14:10:46.87
えーーん 指が10本じゃあ足りないよ~~~ www
かつてのKummmer並みの写経スレと化してきましたwww
420:132人目の素数さん
14/10/26 14:14:22.60
足の指があるだろ
ちんこも入れれば更に+1
421:132人目の素数さん
14/10/26 14:15:45.95
プロの方はここで時間潰してないで研究、教育に打ち込んで下さい。
422:132人目の素数さん
14/10/26 14:17:37.29
ちょっと暇なときにクズ=スレ主からかう時間くらいあるよw
423:132人目の素数さん
14/10/26 14:24:10.88
学生のアホさ加減に嫌気がさしたときにこのスレを開くと
「うちの学生だってこのスレ主よりはマシだ」
と思えてきます。ありがとう>スレ主
424:132人目の素数さん
14/10/26 14:24:59.76
置換群に悩み、自分の立てたスレを数字列で荒らすスレ主の姿↓
URLリンク(instagramtag.com)
425:132人目の素数さん
14/10/26 14:31:11.21
>>419
スレ主です。ぼく、大丈夫だよ。足の指も使え。そうすれば、20までは大丈夫。>>416のメタサイクル群B5' は位数20だから、それでなんとかなるよ
>>418 つづき
3列目の15432に注目しよう
これは、P7の十二面体の図の一番手前に見えている面のちょうど裏
(12345が、一番手前の面)
で、面12345と面15432の関係は?
一つの見方は、裏返しだ。面12345の辺1を通る線対称の軸を中心にして回転して裏返す。
1は動かない。2と5、3と4が入れ替わる。だから、置換 (25)(34)を書いてある。
P7の十二面体の図で、右上から左下に向かう辺①と辺①を結ぶ軸が見えるだろうか?
この軸を使って、十二面体を回転させると、面12345と面15432とが入れ替わる
なので、言い換えれば、面12345と面15432とで部分群としてD5が、十二面体の中に入っているということができる
426:132人目の素数さん
14/10/26 14:35:24.51
返しが滑ってるぞ
427:132人目の素数さん
14/10/26 14:41:08.76
>>420
スレ主です。かぶった。スマソ
>>423
そうか。みんなを勇気づけているのか・・
>>425 つづき
2列目は、置換 (23)(45)(25) から得られて、これは奇置換なのでA5には含まれない
4列目も、置換 (24)(35)(25) から得られて、同じ
まとめると、二面体群D5は、A5の部分群
メタサイクル群B5' は、奇置換を含み、従って半分A5からはみ出している
428:132人目の素数さん
14/10/26 14:52:30.33
>>405
スレ主です。
ちょっとここへ戻る
P7の十二面体で、面12なのに、なぜ6組み?と思った方へ
>>425と>>418に書いたように、十二面体で、各面は裏表の関係で、辺の中心を通る軸の180度の回転で重なる関係にある
だから、ある面を通る回転軸は、裏の二面体群の関係にある群とセットになっているから、6組みになる
429:132人目の素数さん
14/10/26 15:07:52.63
>>428
まとめると
エム・ポストニコフ>>172に書いてあるが(P146辺り)、
メタサイクル群 B5'⊃二面体群 D5⊃巡回群 C5
剰余群 B5'/D5 , D5/C5 は、位数2の群であり、ゆえに巡回群であり、従ってB5'は可解
交代群 A5⊃二面体群 D5⊃巡回群 C5
交代群 A5¬⊃メタサイクル群 B5'
430:132人目の素数さん
14/10/26 15:15:33.10
>>429
ガロアが指を使ったかどうかは分からないが
スレ主の知能程度でも、ガロア記法と指を使えば、この程度は具体的に解析できる(参考書をカンニングしているけどね)
なので、ガロア記法が結構具体的なS5やA5の置換の解析に役立つということは分かって貰えたろう
ガロアもこんなことをやったんじゃないかなと
では
431:132人目の素数さん
14/10/26 15:18:23.33
と、正規部分群も理解してない人に言われても
432:132人目の素数さん
14/10/26 15:40:10.03
▂ ▇▇▇▇▇▇
█▊ █▎▃▃▃█
█▎█▌ █
████████
██ █▎▇▇▇▇ █
█ █▎█▍▂█ █
█ █▎█▍ ▇█
▅███▅▃▃▃▃▃▃▃▃
▂▂
▅▅▅▆ █▌
█▉███████▌
▃ ▉ ▄▄█▌▄▄
█ ▉▃ ▉ █▌ █
█ ▉ █▇██▇█
█ ▉ ▄██
█▅██▌███▌█▇
█▊ ██ █▌ ▊
433:132人目の素数さん
14/10/26 15:40:55.91
>>429
スレ主はメタサイクル群の幾何学的対応物を分かってない。
間違いなく。
434:132人目の素数さん
14/10/26 15:45:17.20
▇▄ ▅
█▎ █▉ █▉
██ ▄▄▄▄█▄▄▄
▂█▍ █▍ █▋
██▍ ██████▌
███▍ ▇█ █▎
█▆██ █▍
█▍▎███ █ █ █▍
█▍ █▎█ █▎▎ █
█▍ █ ███
▅ ▆▅
▇▍ █ █▍
██ █ ████████▌
▄██ █▍
█▊ █ ███████▋
█ ▆
█████████████▍
▆█▌ █▍ █▊
▅▇████ ██
▄█████▎ ██▇
435:132人目の素数さん
14/10/26 16:12:12.45
今になって昔を見直すと↓のようなレスをやってるスレ主にはジワっとくるw
90 :132人目の素数さん:2014/10/05(日) 14:41:54.85
>>88
どうも、スレ主です
>つまりHが準同型写像の核になっているということだね。
ああ、そういう考えはあるね(下記)
436:132人目の素数さん
14/10/26 16:13:36.79
正規部分群の概念に到達してもいないスレ主のなんちゃって解説↓
117 :132人目の素数さん:2014/10/11(土) 09:46:06.23
>>116 つづき
どうも、スレ主です
まとめると
ガロアが彼の記法のまま考えていたかどうかは、聞いてみないと分からない
しかし、ガロア論文P36-37にわたって、彼は彼の記法(置換の記法)を使って
4次方程式の群について、簡潔に説明している
その説明を、現在の主流のコーシー記法で表すとどうなるかを、>>98-116にわたって書いた
そこで、読み取って頂けると思うが、彼の記法(置換の記法)は、群の組み分けを考えるのに、非常にすっきりしていること
コーシー記法の1行目を省略したことで、かえって1行目を読み替える思考実験をして見ることがたやすい>>111
そして、彼の記法を通じて、明確に正規部分群の概念に到達していたと思う
437:132人目の素数さん
14/10/26 16:15:30.52
↓思えば、>>131はスレ主の良き理解者であった
131 :132人目の素数さん:2014/10/12(日) 13:01:07.98
>疑問は、ブログの主に質問してください
自分の中で消化してないコピペを貼る心は?
132 :132人目の素数さん:2014/10/12(日) 13:18:43.89
どうも、スレ主です
面白そうなページ紹介
URLリンク(hiro-san.seesaa.net)
五次方程式とガロア群論を理解するための“単純な”たとえ話 ヒロさん日記 2009年08月10日
数学の進歩を100年早めたといわれるガロアの群論は、ときどき気になっている。
とりわけ「5次以上の方程式は代数的な一般解が存在しない」という話は、せめて大まかな流れぐらいは理解できないものか。
群論を何も知らない人は、群の次数・位数、対称群(=置換群)、巡回群、可換群(=アーベル群)、部分群にまず慣れ親しんでから、
偶置換、交代群、正規部分群を理解し、円分方程式、拡大体、ガロア拡大、ガロア関数、ガロア分解方程式などの壁をロッククライミングしながら、
じっくりとビバークして考えているうちに「なるほどね」と言えるようになるらしい。
方程式の問題をどのように群論に置き換えているのか、という全体像はチャートでも描いてみないとわからない。
私が探した範囲では<こちらのページの最後にあるチャートマップ>が全体像をもっともよく俯瞰しているように思える。
438:132人目の素数さん
14/10/26 16:18:07.01
しかし、このスレのハイライトは、やはり↓であろうwww
245 :132人目の素数さん:2014/10/18(土) 23:38:52.06
>>242
つづき
スレ主です。
補足ありがとう
うん、正規部分群の概念は、なかなか分かりづらいところだ
みなさん、良く考えてみてください
↑↑実は本人が「良く考えてみて」>>404-430だった、とw
439:132人目の素数さん
14/10/26 16:47:27.70
スレ主さんは数学より政治家に向いてると思う。
どんな恥ずかしい状況でも全くブレずに上から目線で通せる能力をこんな糞スレで埋もれさせたらもったいない。
440:132人目の素数さん
14/10/26 17:42:07.91
スレ主さんへ贈る言葉
「正規部分群の概念は、なかなか分かりづらいところだ
スレ主さん、良く考えてみてください」
441:132人目の素数さん
14/10/28 00:11:01.45
「今の時代はネットで検索すればなんでも出てくるから、学校の
勉強は意味がない」というバカに読ませたいスレだなw
ネットで英文の記事まで検索してきて、いろいろ知ったかしてても
実は正規部分群もわかってないアホもいるんだ。やっぱり、学校で
ちゃんと勉強しておかないと↓みたいなことを言うだけのクズになる
>同一人物だと思うけど、数学科2年くらいかね?
>
>視野狭い。まだ、行列とか線形空間とか、未消化。自分が、大学で教えられた世界がすべてだと。
>まあ、卒業のころに、戻ってきな。
442:132人目の素数さん
14/11/02 20:10:51.81
>>407
どうも。スレ主です
一箇所訂正
誤
(135)
32145←
52143
正
(135)
32541←
52143
443:132人目の素数さん
14/11/02 20:26:30.87
>>418
どうも。スレ主です
URLリンク(www.isc.meiji.ac.jp)
2007 年度卒業研究 5次方程式 高校生に5次方程式の解の公式が存在しないことを教える試み 理工学部数学科 金沢雄太 2008 年
P7の十二面体の図を使って続きをば
二面体群D5(下記)をつくる
URLリンク(ja.wikipedia.org)
ガロア記法で書くと(>>405)
D5
12345←規準
23451←巡回部分
34512
45123
51234
(14)(23)←巡回群に対する反転の置換
54321←以下反転部の巡回(素直に置換(14)(23)を12345に施すと43215から始まるが、美観を尊重して54321から始める)
43215
32154
21543
15432
444:132人目の素数さん
14/11/02 20:39:22.33
>>443
どうも。スレ主です
ここで、ガロア記法を使って、D5でA5(交代群)の右及び左剰余類(下記)を具体的に書いてみる
(C5でも書けるが、D5の方が分かりやすいと思うので)
URLリンク(ja.wikipedia.org)
剰余類
445:132人目の素数さん
14/11/02 20:52:02.25
>>443
どうも。スレ主です。まず右剰余類
g= (23)(45),(15)(34),(12)(45),(15)(23),(12)(34)
D5 D5*g(右剰余類)
12345 13254 52431 21354 53241 21435←規準
23451 32541 24315 13542 32415 14352
34512 25413 43152 35421 24153 43521
45123 54132 31524 54213 41532 35214
51234 41325 15243 42135 15324 52143
(14)(23)←巡回群に対する反転の置換
54321 45231 13425 45312 14235 53412
43215 52314 34251 53124 42351 34125
32154 23145 42513 31245 23514 41253
21543 31452 25134 12453 35142 12534
15432 14523 51342 24531 51423 25341
446:132人目の素数さん
14/11/02 21:07:23.46
>>443
どうも。スレ主です。次左剰余類
g= (23)(45), (15)(34), (12)(45), (15)(23), (12)(34)
D5 g*D5(左剰余類)
12345 13254 52431 21354 53241 21435←規準
34512 35421 24153 43521 25413 43152
45123 41532 35214 54132 31524 54213
51234 52143 41325 15243 42135 15324
(14)(23)
54321 53412 14235 45312 13425 45231
43215 42351 53124 34251 52314 34125
32154 31245 42513 23145 41253 23514
21543 25134 31452 12534 35142 12453
15432 14523 25341 51423 24531 51342
447:132人目の素数さん
14/11/02 21:25:09.44
>>448 訂正スマソ(1行消えていた)
g= (23)(45), (15)(34), (12)(45),(15)(23),(12)(34)
D5 g*D5(左剰余類)
12345 13254 52431 21354 53241 21435←規準
23451 24315 13542 32415 14352 32541
34512 35421 24153 43521 25413 43152
45123 41532 35214 54132 31524 54213
51234 52143 41325 15243 42135 15324
(14)(23)
54321 53412 14235 45312 13425 45231
43215 42351 53124 34251 52314 34125
32154 31245 42513 23145 41253 23514
21543 25134 31452 12534 35142 12453
15432 14523 25341 51423 24531 51342
448:132人目の素数さん
14/11/02 21:27:53.90
>>445-447 (>>447 訂正 >>448→>>446)
どうも。スレ主です。補足説明
g= (23)(45), (15)(34), (12)(45), (15)(23), (12)(34)
これは、金沢雄太のP7の十二面体の図で、正面の12345を規準として、巡回群及びその反転の二面体群D5を考えている
正面の12345から、置換(23)(45)で、辺1の中点を180度回転させて正5角形を12345 →13254に移す
D5*g(右剰余類)は、D5に例えばg= (23)(45)を作用させると定義する。
(左剰余類は、その逆)
右剰余類は、巡回群の性質が保存されている
一方、左剰余類は、巡回群の性質が壊されている
449:132人目の素数さん
14/11/02 21:35:13.86
正規部分群の概念は、なかなか分かりづらいところだ
スレ主さん、良く考えてみてくださいwww
450:132人目の素数さん
14/11/02 21:37:06.52
>>448
どうも。スレ主です。補足説明
>正面の12345から、置換(23)(45)で、辺1の中点を180度回転させて正5角形を12345 →13254に移す
分かると思うが、ここは順に辺2,3,4,5に対して同様で、
その置換が、 (15)(34), (12)(45), (15)(23), (12)(34) になる
>右剰余類は、巡回群の性質が保存されている
>一方、左剰余類は、巡回群の性質が壊されている
より重要なことだが、見てお分かりのように、
D5*g(右剰余類)≠g*D5(左剰余類)
また
C5*g(右剰余類)≠g*C5(左剰余類)
となっている
だから、D5、C5ともA5の正規部分群ではないことが分かる
451:132人目の素数さん
14/11/02 22:11:39.19
このスレッドはチンパンジー「アイちゃん」が
正規部分群の理解のために立てたものです。
アイと研究員とのやり取りに利用するスレッドなので、
関係者以外は書きこまないで下さい。
霊長類研究所
452:132人目の素数さん
14/11/02 23:01:08.29
>>404
ここに戻る
>が、「ここから、ガロアが正規部分群の概念に気付いても不思議ではない
>σによる変換が見やすい。これが、ガロア記法の大きな利点と考える 」>>232 ってところは、それほど間違っていない気がする
>(ガロアが、生きていればどう言うか不明だが)
>うまく、表現できないけど。ここは、その内うまく説明できるよう考えてみる
>今週は、「指を折って数える」練習をします
ガロア記法で指を使って考えてみた
ガロア記法だと、正規部分群 URLリンク(ja.wikipedia.org)
の定義 gNg-1 = N より
「左剰余類全体の成す集合と右剰余類全体の成す集合とが一致する。」の方が見やすいのかも知れない
実際、ガロアが表現したのは、「左剰余類全体の成す集合と右剰余類全体の成す集合とが一致する。」だった
453:132人目の素数さん
14/11/02 23:10:31.31
>>452
ところで
こんなファイルが落ちていた
URLリンク(www-math.ias.tokushima-u.ac.jp)
§0.はじめに.
ラグランジュは1770年から1771年にかけて「方程式の代数的解法についての省察」というタイトルの217ページにも渡る論文(全集第三巻)を書き、
「代数的解法として知られる解法を一般的な原則に還元し、それらが3次、4次では成功したが、
§5.終わりに
学部では不十分にしか学ぶことが出来なかった方程式論を、院にて一応の区切りまで学ぶことが出来た。
しかし、ここで改めてガロアを始めとした過去の偉人たちのすごさに圧倒された。
また、ここには示してはいないが、ガロアによるオリジナルの方程式論は非常に難解なものであるのだが、
もし彼が現代に生きていて現代の方法で方程式論を纏めたなら一体どのようなものになるのか非常に興味深いものである。
(引用おわり)
URLリンク(www-math.ias.tokushima-u.ac.jp)
徳島大学 大渕 朗のホームページ
なので、2006年修士 ogawa氏の論文だろう
454:132人目の素数さん
14/11/02 23:43:25.55
>>449
>正規部分群の概念は、なかなか分かりづらいところだ
スレ主です。ありがとう。S5とA5は、ガロア記法を使えば処理できた>>450>>452
なので、5次方程式までなら、なんとかなりそうだよ
ところで、正規部分群の概念が、なかなか分かりづらいのはどうも一般的みたいだな
下記があったね
URLリンク(note.chiebukuro.yahoo.co.jp)
群論の世界 - Yahoo!知恵袋:ライター:sugu7867さん(最終更新日時:4日前)投稿日:2014/2/13
(抜粋)
兵庫教育大学自然系数学 松山 廣先生のPDFも圧巻で必見ものです。
正規部分群と凖同型は「工学のための応用代数」杉原厚吉・今井敏行のイラストでの説明は必見。
群論の勉強がある程度できていないと理解しにくい本永田 雅宜「群論への招待」や原田 耕一郎「群の発見」も同様で初学者は避けたほうが良い本です。
私の推薦書は「カラー図解 数学事典」です。ネットで「らいおんの家」]と「有限群の広場」をよむことを薦めます。
ネット動画you tube 圏論勉強会 第2回の終わりの15分は必見です。
ガロアのすごいのは「体」は拡大していくのに反して、対称性(ガロア群)が縮小していくのが一対一に対応するのを発見したこと。
要するに3つのものの入れ替えが作る群は良い性質を持っているので3次方程式は解けるが5つの
ものの入れ替えである5次対称群(方程式)はその性質を持っていないために可解群(解けない)でない。
URLリンク(www.dpmms.cam.ac.uk)
を必読しよう。
なおモンスター群については「シンメトリーとモンスター 」は超お薦めの入門者必読の名著です。
455:235
14/11/02 23:44:14.79
>>452
「そこ」から気づいたらおかしいんだよ。どんな部分群もその共役群とは同型なんだから。
まだわかってないんだ。すごい徒労感がある。
456:235
14/11/02 23:48:11.85
>>448
>右剰余類は、巡回群の性質が保存されている
一方、左剰余類は、巡回群の性質が壊されている
滅茶苦茶
457:132人目の素数さん
14/11/02 23:56:17.07
>必読しよう
なんじゃこりゃ
458:132人目の素数さん
14/11/03 00:00:29.22
>スレ主です。ありがとう。S5とA5は、ガロア記法を使えば処理できた>>450>>452
>なので、5次方程式までなら、なんとかなりそうだよ
視野狭い。まだ、行列とか線形空間とか、未消化。自分が、ネットで検索した世界がすべてだと。
まあ、小学卒業のころに、戻ってきな。
459:132人目の素数さん
14/11/03 00:01:37.32
>なおモンスター群については「シンメトリーとモンスター 」は超お薦めの入門者必読の名著です。
正規部分群も理解できてないサルが名著かどうかわかるわけないじゃんw
460:132人目の素数さん
14/11/03 02:55:35.61
>>454
>>27には
> 効率のことを考えるときに最も重視すべきは金じゃなくて時間対効果だよ。
> これ正にスレ主としても言いたいこと
とあって
初代スレが2012/01/31からで準備期間を足せばおおよそ三年間(以上)経過しているわけ
だけれども時間の効率は良いと言えるの?
たとえばスレ主が学部生向けの代数のテキストで勉強するとしたらどれくらいかかりそう?
あと>>291で証明を書いてもらって誤りが分かったということだが
> 自分で気付くまで放置しようと思ったが、
> これだけ言って分からないようなら、以降無視(スルー)だな
と>>291の前にスレ主は書いていて
もし>>291が書き込まれずにスルーされていたら誤りを自分で気付くのにどれくらいの期間が必要だと
スレ主は見積もる?(たとえば一年かかるのなら2012/01/31から四年近く経過することになるが)
461:132人目の素数さん
14/11/03 04:03:42.08
>>283
>なんか、勘違いしてない?
お前だよw お ・ ま ・ え
>>284
>これだけ言って分からないようなら、以降無視(スルー)だな
お前だよw お ・ ま ・ え
462:132人目の素数さん
14/11/03 07:26:49.66
<基本定理>
関西大学 和久井道久先生:”定理の証明の細部が省略されている場合があります(まれに、著者
の勘違いや思い込みにより省略されてしまっていて、しかも、間違っていることもあります)。”
スレ主に同じ。QED
URLリンク(www2.itc.kansai-u.ac.jp)
氏名:和久井道久(Michihisa Wakui) 所属:関西大学システム理工学部
URLリンク(www2.itc.kansai-u.ac.jp)
授業関連(過去の授業分)
URLリンク(www2.itc.kansai-u.ac.jp)
現代数学の基礎知識 (web版) 平成21 年3 月10 日
(抜粋)
本書は平成15 年度、平成16 年度、平成18 年度の3年間にわたって、大阪大学で行なわれ
た1年生向けの授業「数学の楽しみ」のために筆者が作成したプリントに基づいている。
P12
●数学書を読むときや授業を聴くときの心構え
数学の本は、随筆や小説を読むように、スラスラと読むことはできません。数学の教科書や
講義では、
・容易に説明はできるけれども、実際に書くとなると少し面倒である、
・この程度のことはお互い既知としておきたい、
・実際に説明しようとすると、読者や聴講者の知識を大幅に超える事柄が必要である、
・それをいちいち書くと、証明の本質的な部分が見えなくなってしまう、
などさまざまな理由から、定理の証明の細部が省略されている場合があります(まれに、著者
の勘違いや思い込みにより省略されてしまっていて、しかも、間違っていることもあります)。
463:132人目の素数さん
14/11/03 07:38:21.69
関西大学 和久井道久先生の下記、『代数の理論』。500ページを超えているのでびっくり。
自分のために書いているんだ!
URLリンク(www2.itc.kansai-u.ac.jp)
すうがく文庫シリーズ(個人で使用するために作成したノート)
代数の理論(web版) 2002年に作成したノート『代数の理論』(すうがく文庫32)のweb版
URLリンク(www2.itc.kansai-u.ac.jp)
(抜粋)
はじめに
これは、体上の代数の理論に関する入門書である。ホップ代数の分類理論に関するまとめ
を作っておきたいという気持ちから書き始めた。しかし、タイトルの示す通り、その目的を
達成することができなかった。というのは、思いのほか、代数の理論の復習にページを割い
てしまったからである。
このノートでは、核となる定理とその証明のみを本文で述べるように努めた。
書き上げるのに2年を要してしまったが、こうしてまとめあげることができて嬉しい。書
ききれなかった事柄も少なくないが、ひとまずこの辺で……。
著者しるす 2002 年10 月
464:132人目の素数さん
14/11/03 07:51:58.47
>>455-461
スレ主です。ありがとう。ひまな粘着くんたちへ
君たちのおかげで、スレが活性化されてうれしいよ。これからも頑張って。スレが続く限り
花もアラシも踏み越えて・・、それが正しい2ちゃんねる。アラシももスレの花だ
>>451
スレ主が、研究員。君がチンパンジー「アイちゃん」だね。
霊長類研究所長
>>455
どうも。本当に感謝だ。よく分かったよ。”どんな部分群もその共役群とは同型”だと
S5とA5の関係で、もやっとして理解できていないところがあったんだ
S5が、(12345)からなる順列の置換全体で、位数120
A5が、(12345)からなる順列の偶置換全体で、位数60
残りの、60の奇置換全体はどうなるのか?と
465:455
14/11/03 08:07:15.51
>>464
ひまな粘着くんと罵倒しながら、本当に感謝とか何なんだ
466:132人目の素数さん
14/11/03 08:08:59.52
>>464 つづき
訂正:アラシももスレの花だ→アラシもスレの花だ (”も”のダブり)
スレ主です。ありがとう。ひまな粘着くんたちへ
>残りの、60の奇置換全体はどうなるのか?と
残りの、60の奇置換全体にもA5と同じ群構造が入るんだね
S5=A5+A5(12)
と剰余類分解してみる。積の順は>>448に同じ(A5に対し互換(12)を施す(スレ主の置換の基本はこれ))
偶置換A5と奇置換A5(12)は、同じ群構造だと
467:132人目の素数さん
14/11/03 08:36:37.27
>>466
奇置換全体は、置換の合成では群にはならないよ。
どんな有限集合にも群構造が入るという一般論があるから、そりゃ群構造は入るけど。
468:132人目の素数さん
14/11/03 08:45:57.27
>>466
あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。
469:132人目の素数さん
14/11/03 09:10:55.62
>>466 つづき
スレ主です
>S5=A5+A5(12)
>偶置換A5と奇置換A5(12)は、同じ群構造だと
ここをガロア記法>>452で説明してみる
A5は、ガロア記法では、"12345"を規準とする偶置換で、全部書き出すと>>405-408になる
(一箇所訂正 >>442)
ガロア記法の説明は>>227 (詳しくは、彌永本を)
簡単に復習すると、良く教科書にある2行記法(コーシーによる)の第一行目を省略している(自明としていると言い直してもいいかも)
こうすると、見通しがよくなることが多い(例えば>>227)
で、繰り返しなるが、A5は"12345"を規準とする偶置換で、>>405に書いたように
(12345) ・・・
23451 ・・・
34512 ・・・
45123 ・・・
51234 ・・・
(以下略)
のようになる。ここで具体的に書いた部分は、C5(位数5の巡回群)
470:132人目の素数さん
14/11/03 09:21:46.76
>>469 つづき
スレ主です
(12345) ・・・
23451 ・・・
34512 ・・・
45123 ・・・
51234 ・・・
(以下略)
ここで、互換(12)を施すと
(21345) ・・・
13452 ・・・
34521 ・・・
45213 ・・・
52134 ・・・
(以下略)
となる。分かりますか?
ガロア記法では、後段の規準は(21345)と考えるんだよ
471:132人目の素数さん
14/11/03 09:32:15.44
>>470 つづき
スレ主です
ほとんどの人は分かったと思うが、まだ分からない方のために補足
(21345)→(abcde)と書き直す(普通と異なり2→a,1→bとする)
(21345) ・・・
13452 ・・・
34521 ・・・
45213 ・・・
52134 ・・・
が
(abcde) ・・・
bcdea ・・・
cdeab ・・・
deabc ・・・
eabcd ・・・
となる。これは、>>470の前段で(12345)→(abcde)と書き直して得られる置換と同じだ
これで、全部の人が分かったと思う
472:132人目の素数さん
14/11/03 09:38:20.56
>>471 つづき
スレ主です
つまり
(21345)
13452
34521
45213
52134
は、C5と同じ群構造なんだ
と同様に
(21345) ・・・
13452 ・・・
34521 ・・・
45213 ・・・
52134 ・・・
(以下略)
は、同様に、A5と同じ群構造なんだ
473:132人目の素数さん
14/11/03 09:50:13.59
長々と説明する必要はない。
集合Xから群Gへの全単写fが存在するならば、x,y∈Xに対し
x・y=f^-1(f(x)*f(y))と定めることによりXには群構造が入る(ここで*は群Gの群演算)。
XがS5の奇置換全体、GがA5の場合がスレ主の言いたいことである。
474:132人目の素数さん
14/11/03 09:59:56.51
>>472 つづき
スレ主です
「だからどうなの?」「トリビアじゃないか?」というあなた。半分正解
実は、「A5が正12面体で表される」 ( URLリンク(www.isc.meiji.ac.jp) P7の図 >>443)
の拡張として、S5を図で表す方法を考えた
二面体群(下記)がヒントになった
URLリンク(ja.wikipedia.org)
URLリンク(www.isc.meiji.ac.jp) P7の図 >>443 で、互換(12)を施す
すると、>>472で書いたA5と同じ群構造を持つ奇置換(規準を(12345)に取ると奇置換)から成る図ができる
これを、偶置換の正12面体の裏に張り込む。表は、偶置換、裏は奇置換の正12面体ができる
二面体群と同様に、裏表の反転演算 tを考える
そうすると、正12面体の表裏を使って、位数120。つまり、S5が図で表されていることになる
裏面(奇置換全体)は、表と同様にA5の群構造(対称性)を持つ
475:132人目の素数さん
14/11/03 10:17:59.87
>>474
半分正解じゃなくて正解だろ
476:132人目の素数さん
14/11/03 10:30:34.40
>>474 つづき
スレ主です
図が描けると良いのだが、この板では不可なので、もう少し補足する
(分かっている人には蛇足だが)
互換(12)を施した正12面体は、透明な膜で作ることにします
これを、先の正12面体に小さな穴をあけて、ちょうど互換(12)を施したことが分かるように重ねて貼り付けるんだ
裏表の反転演算 tは、小さな穴を通して裏返す感じかな (一度穴を開けて、また閉じても同じだが)
(服や袋物で、リバーシブル( URLリンク(ja.wikipedia.org) )という裏返して使える物があるが、あれをイメージしてください。)
(二面体群は、平面図形の反転だが、それを多面体の表裏の反転に適用したんだ)
477:132人目の素数さん
14/11/03 10:59:38.77
>>476 つづき
スレ主です
今回、指を使って考えるとき、補助として、あみだくじで置換を考えたんだが
例えば下記に詳しい説明がある
URLリンク(www.h6.dion.ne.jp)
1.7.2.3 あみだくじ .................... 49
URLリンク(www.h6.dion.ne.jp)
高校数学+α : なっとくの 線形代数
URLリンク(www.h6.dion.ne.jp)
大学数学へのかけ橋!『高校数学+α :基礎と論理の物語』
(引用終わり)
普通のあみだくじを拡張して、電気配線の結線図で”またぐ”記号(例えば、下記
URLリンク(okwave.jp) 線をまたぐ記号 )
を導入して表現を拡張すると、隣り合わない数字間での入れ替わりが、表現できて考え易かったね
(もうだれかが考えているかも知れないが・・)
478:132人目の素数さん
14/11/03 11:04:50.81
>>476
あなたがやりたいことは>>473に書かれているから説明しなくていいよ
479:132人目の素数さん
14/11/03 11:49:18.16
どうしてスレ主は馬鹿なのに上から目線したがるの?
480:132人目の素数さん
14/11/03 11:53:05.02
>>474
>「だからどうなの?」「トリビアじゃないか?」というあなた。半分正解
残り半分がどう不正解なのか詳しく
481:132人目の素数さん
14/11/03 12:04:30.12
スレ主はバカなのに上から目線で語りたいだけ
相手にしても仕方ないクズ
482:132人目の素数さん
14/11/03 12:10:49.23
>>467
>奇置換全体は、置換の合成では群にはならないよ。
そうそう。半分正解。スレ主もそう思い込んでいた。これについては、>>474に書いた
>>468
>「要素が60個の集合には5次交代群と同型の群構造が入る」
数学的陳述としては、不正解と判定されるだろうね(下記参照)
URLリンク(www.akanekodou.mydns.jp)
位数 119までの群の分類 Red cat 平成23年10月3日
「17 位数 60 の群」P57とその結論P63
483:132人目の素数さん
14/11/03 12:16:14.41
>>482 補足(これは資料集として参考になるだろう)
URLリンク(tsukinihinikeni.blogspot.jp)
2013年8月31日土曜日 小さい位数の有限群の分類
割と小さな自然数nに対し、位数nの有限群が同型を除いて何種類存在するか、という問いに対する有益な資料へのリンク集。
どの資料についても、自分で検証はしていない(というかする能力がない・・・)のでどれくらい信頼できる資料かは分かりませんが。
位数119までの群の分類
URLリンク(www.akanekodou.mydns.jp)
119以下のほとんどの位数について、群の具体的な表示と、分類の証明まで行っているすごいテキストです。これを読みこなせれば随分とテクニックが身につくんだろうなあと思う、当面の自分の目標。
位数30以下の群の分類
URLリンク(www.math.meiji.ac.jp)
明治大学の学生の卒論。位数30以下の群の分類について、基本的な手法の証明や用語の定義も含め丁寧に書いてあります。
The list of all discrete groups of order less than or equal to 100
URLリンク(lpsc.in2p3.fr)
位数100以下の群一覧表。とても便利です。
numbers of groups of orders 1 to 2015
URLリンク(orion.math.iastate.edu)
2015以下のnに対し、位数nの群が何種類存在するかの個数一覧表。すごい・・・。
これによると、位数2015以下の群は全部で49,910,529,553種類存在するとのこと。
その内49,487,365,422個(99.2%)は位数1024の群、残った423,164,131個の内408,641,062個(96.6%)は位数1536の群という豆知識が得られました。
どれも根気勝負みたいな資料で、作成された方々にはほんとうに頭が下がります。
2013/9/4 追記 「numbers of groups of orders 1 to 2015」について。
日本数学会 代数学分科会 シンポジウム
URLリンク(mathsoc.jp)
8月4日 原田耕一郎氏の報告資料
484:132人目の素数さん
14/11/03 12:23:11.24
>>420
>ちんこも入れれば更に+1
スレ主です。突然戻るけど
男性の方が数学をやるのに有利ってことだよね
485:132人目の素数さん
14/11/03 12:55:34.92
>>482
かなり酷い間違いをしている
「要素が60個の集合には5次交代群と同型の群構造しか入らない」
と読み違えたんだろうか。
>「要素が60個の集合には5次交代群と同型の群構造が入る」
数学的陳述としては、不正解と判定されるだろうね(下記参照)
URLリンク(www.akanekodou.mydns.jp)
位数 119までの群の分類 Red cat 平成23年10月3日
「17 位数 60 の群」P57とその結論P63
486:132人目の素数さん
14/11/03 13:03:37.93
>>474は
>>473で
X:S5の奇置換全体
G:A5
f:S5→A5
f(x)はxに置換(12)を右から作用させたもの
になっている。
奇置換全体が置換の合成で群になっているわけではない。置換(12)を挟み込む必要がある。
487:132人目の素数さん
14/11/03 13:20:33.62
(1) 裏面(奇置換全体)は、"表面の置換の合成" を人工的に誘導することで群構造が入る
(2) 裏面(奇置換全体)は、"裏面の置換の合成(=奇置換がもともと持っている置換の合成)" では群にならない
スレ主が主張しているのは(1)であり、皆が何度も主張しているのは(2)である。
(1)と(2)は、内容自体はどちらも正しいが、(1)のことを
「奇置換全体は、置換の合成で群になる」…(★)
と言ってのけるのは不自然である。正しい・間違いではなく、単純に「不自然」である。
なぜか?まず、>>473のようにして
(3) 要素の個数が60である任意の「集合」は、"表面の置換の合成" を人工的に誘導することで群構造が入る
という主張が成り立つことに注意しよう。もし(★)の解釈がまかり通るのならば、(3)に対しても
「要素の個数が60である任意の「集合」は、置換の合成で群になる」
と主張できてしまう。いかに不自然な主張であるか、ハッキリ分かるだろう。
488:132人目の素数さん
14/11/03 13:40:17.82
>数学的陳述としては、不正解と判定されるだろうね(下記参照) (>>485)
>裏面(奇置換全体)は、表と同様にA5の群構造(対称性)を持つ (>>474)
スレ主の上記の主張を組み合わせると、以下のような主張に辿り着く。
・裏面(奇置換全体)は、C60 の群構造を持つ
・裏面(奇置換全体)は、C2×C30 の群構造を持つ
・裏面(奇置換全体)は、D60 の群構造を持つ
・裏面(奇置換全体)は、Q60 の群構造を持つ
・裏面(奇置換全体)は、C3×D20 の群構造を持つ
・裏面(奇置換全体)は、C3×Q20 の群構造を持つ
・裏面(奇置換全体)は、C5×D12 の群構造を持つ
・裏面(奇置換全体)は、C5×Q12 の群構造を持つ
・裏面(奇置換全体)は、C5×A4 の群構造を持つ
・裏面(奇置換全体)は、D6×D10 の群構造を持つ
・裏面(奇置換全体)は、A5 の群構造を持つ
・裏面(奇置換全体)は、< a,b|a^15=b^4=1, bab^{-1}=a^2 > の群構造を持つ
・裏面(奇置換全体)は、< a,b|a^15=b^4=1, bab^{-1}=a^7 > の群構造を持つ
スレ主の主張がいかに荒唐無稽であるか、よく分かるだろう。
上記の13行の主張は、内容自体はどれも 正 し い 。
しかし、だからと言って、なにか意味のある主張をしているわけではない。
スレ主が実際に明言したのは、上記13行のうち11行目だけであるが、
スレ主が言うところの そのような主張は、実際には上記13行と全く同程度の意味しか
持っていないのである。すなわち、荒唐無稽で意味のない主張なのである。
489:132人目の素数さん
14/11/03 16:10:54.13
スレ主は感謝しなきゃな
ただで手取り足取り教えてもらって
490:132人目の素数さん
14/11/03 16:27:54.91
スレ主、DQNの正体がバレても相手してもらえるなんて幸せだな。
491:132人目の素数さん
14/11/03 18:28:48.80
>>1は数学と直感という話が好きなようなのでこれを読んでおくとよいと思う。
URLリンク(terrytao.wordpress.com)’s-more-to-mathematics-than-rigour-and-proofs/
492:132人目の素数さん
14/11/03 20:43:55.51
しかし、せっかく直してもらっても、スレ主には何が正しいのかわからないのであった
493:132人目の素数さん
14/11/03 20:50:42.92
一生の恥としないためにも一時の恥をばねに勉強しろよスレ主。
494:132人目の素数さん
14/11/03 21:05:28.87
しかし、恥をさらし続けるだけのスレ主であったw
495:132人目の素数さん
14/11/06 17:43:30.00
もうやめて!スレ主のライフは0よ!!!
496:薬剤師は税金の無駄
14/11/07 01:55:39.77
【7億円】業界激震!!超有名アイドルグループ所属の美少女が衝撃のAVデビュー オファー契約金は破格の7億円
本誌独占!緊急記者会見
URLリンク(www.youtube.com)
497:132人目の素数さん
14/11/07 07:04:06.62
>>495
全然懲りてないよ。
週末になったらまた書き込みにくるよ。
498:132人目の素数さん
14/11/07 12:18:09.40
すれ主用
正規部分群
URLリンク(ja.wikipedia.org)
旧スレ500kBこえてるのに書き込めるのはなぜだ?
499:132人目の素数さん
14/11/07 12:19:06.25
サルまねの上手さで性能判断はドングリの背比べだよ。
500:132人目の素数さん
14/11/07 12:20:22.77
時間かけまくってサルまねがちょっと上手いからって性能優れてるって勘違いすなよ。
501:132人目の素数さん
14/11/07 18:13:52.67
>>449-500
↑
再びGAP君が生き恥を晒しに来たようですwww
502:132人目の素数さん
14/11/07 20:16:45.00
よっぽどコンプいだいてるんだな
503:132人目の素数さん
14/11/07 21:05:01.83
群Gの任意の元gと任意の部分群Hに対し、Gの部分集合gHには
演算*をa*b=a・g^-1・bと定めることにより群構造が入る。ここで・はGの群演算。
奇置換がどうのこうの言ってる人は要するにこう言うトリビアルな事を言っている。
504:132人目の素数さん
14/11/08 22:11:56.73
ガロアがどのようにして正規部分群の概念に到達したかということについていろいろと書いているが置換を
具体的にいじらなくても正規部分群の元になる考え方はシンプルというか自然な形で出てくると思うけどなあ
(もちろん正確な事は分からないので推測の域を出ないし大雑把なお話レベルだが)
多項式p(x)をp(x)=q(x)r(x)の形にすることを考えたときq(x)が1次式だと解が1つ得られ引き続きr(x)で同様に
考えれば良いのでq(x)の次数は2以上とする
x'-a=q(x)と変換しp'(x')=(x'-a)r'(x')とするとp'(x')=0の解が1つ得られ以後r'(x')で同様に考えていけば良い
1次方程式x'-a=0の群を考えるとge=egが常に成り立っている(恒等置換で解は動かない)
x'をxに戻して上記の事と対応させるとq(x)=0の群をHと書くことにすれば
x': 1次方程式x'-a=0 群e ge=eg
x: 方程式q(x)=0 群H gH=Hg(上のeのように振る舞ってほしい)
となりgH=Hgが成り立っていると置換で動く範囲をq(x)=0の解の集合内に制限できる
ガロア理論とは関係ないが形式的な類似性という話でニールセン-シュライヤーの定理(公式)の証明法も
小ネタというかミーハーなネタになるかもしれない
505:132人目の素数さん
14/11/09 00:36:24.98
痛いなぁ
お馬鹿がバレてしまったので、いくら偉そうに騙ってももう誰もマトモに取り合ってくれない。
506:132人目の素数さん
14/11/09 00:43:08.14
スレ主に今井数学の素晴らしさを教えてやりたい
URLリンク(www5.plala.or.jp)
507:132人目の素数さん
14/11/09 15:43:29.46
フルボッコに論破されてスレ主逃亡?
508:132人目の素数さん
14/11/09 17:40:33.58
フルボッコに論破されようとも、上から目線でいずれ再び騙り出すさ
哀しいかな、それがくだらん数字の羅列であろうともw
509:132人目の素数さん
14/11/09 21:03:08.08
>>485-508
スレ主です。
居ない間に、スレ進んでますね。ありがとう
今週は忙しいので、みなさまと遊ぶ暇が無いのが残念です
>>504
スレ主です。
同感です。似たようなことを考えています
但し、多項式p(x)がガロア分解式で。
その線上で”ガロアがどのようにして正規部分群の概念に到達したかということについて”
>>505
人違いですよ
510:132人目の素数さん
14/11/09 21:52:24.92
>その線上で”ガロアがどのようにして正規部分群の概念に到達したかということについて”
正規部分群の定義の勉強が先では?
511:132人目の素数さん
14/11/09 21:54:10.36
>今週は忙しいので、みなさまと遊ぶ暇が無いのが残念です
遊ばれてることに気付かない馬鹿なスレ主であったとさ
512:132人目の素数さん
14/11/09 23:14:16.32
昔ながらのやり方で釣れると思ってる?
がんばってねw
513:132人目の素数さん
14/11/09 23:24:40.57
あれ?スレ主さん、今週は忙しいんじゃなかったの?
514:132人目の素数さん
14/11/10 00:03:01.94
運営乙
515:504
14/11/10 00:59:58.51
>>509
仮にgH=Hgが正規部分群の元(スタート地点)にできたとしてもすぐに正規部分群の概念(ゴール)に
到達はできないので色々と調べていくしかないわけだけど
とりあえず>>10のリンクの
URLリンク(www.sist.ac.jp)
「三次方程式で二乗根を取って出来る以下の式について詳しく調べてみる。」から
「以上は、ほんの一例で眺めた概略に過ぎない。」までの内容を3次方程式や4次方程式で自分で
調べて補ってみるのが良いかもしれない
516:132人目の素数さん
14/11/10 04:58:54.43
>>515
そのリンク先は「指数2の部分群は正規部分群」以上の事は何も言ってない。
なんか可哀想に思えてくる。
517:132人目の素数さん
14/11/10 11:11:05.17
正規部分群は難しい概念だよ
大学院に行ってからじゃないと無理
518:132人目の素数さん
14/11/10 11:46:08.56
(´・∀・`)ヘー
519:132人目の素数さん
14/11/10 12:12:41.60
幼稚園時代に理解した
520:132人目の素数さん
14/11/11 20:09:05.07
実際、大学院に入ってようやく準同型定理を理解したという代数系の院生は
現代では数知れず・・・
521:132人目の素数さん
14/11/12 14:34:21.44
嘘つけ
そんなんじゃ数学科の学部卒業できんわ
522:132人目の素数さん
14/11/13 01:42:02.52
準同型とかコンパクトとか学部生のときは苦労したなぁ
使っていくうちに慣れたけどね
523:132人目の素数さん
14/11/13 19:49:41.43
>>522
そんなんで良く数学なんてやってられたな
524:132人目の素数さん
14/11/13 21:15:46.67
スレ主は正規部分群で苦労なんてしてないんだろう
馬鹿って楽だよな
525:132人目の素数さん
14/11/13 21:20:06.55
>>524
ほう、君は意味の解釈に苦労したのか?
血の巡りが悪そうだな
526:132人目の素数さん
14/11/13 21:26:48.05
>>525
理解しようとして苦労するのは悪いことじゃないよ
527:132人目の素数さん
14/11/13 22:03:28.52
バカは放置すべきだよ
528:132人目の素数さん
14/11/13 23:07:16.07
>>521
落としたところで来年も理解できないだろうし
あまりに可哀想だから、教授が単位くれるんだお・・・
529:504
14/11/15 02:54:20.76
>>509
リンク先の式(1.1)の形で計算をある程度行ったとして次に(1.2)を使って計算してみる
正規部分群(normal -)という用語は昔の本などではself-conjugate subgroupという用語
が使われていたようでそこで
問題: 式(1.2)においてH1=(g1)H(g1)^(-1), H2=(g2)H(g2)^(-1), H3=(g3)H(g3)^(-1)などと
書いた場合にH1, H2, H3, etc.がどういう状態だと"self-"がつくのか?
このあたりで過去の書き込みをもう一度見直すのが良いだろう
>>227-309や他でガロアの記法の利点ということを何度も書いているがもしガロアが何らかの
方法で(1.2)に気づいていたら(1.1)にまで行く必要性が低くなるはず
例えば19世紀終わり頃の英語の資料でガロア理論を見てみると定義に(1.2)を使って(1.1)の形は
出てこないものがある
>>256の内容は(1.2)でも構わないがスレタイに即してガロアのオリジナルの方法にこだわった
場合に>>257つまり(1.1)を目指してどれくらい整理できるのかな?
530:132人目の素数さん
14/11/15 07:30:08.44
>>529
リンク先というのは何処のリンク先を指すのか?
531:132人目の素数さん
14/11/15 14:15:29.22
>>530
>>515のリンク先、URLリンク(www.sist.ac.jp) だと思う。
532:132人目の素数さん
14/11/15 15:24:51.34
>>529
>問題: 式(1.2)においてH1=(g1)H(g1)^(-1), H2=(g2)H(g2)^(-1), H3=(g3)H(g3)^(-1)などと
書いた場合にH1, H2, H3, etc.がどういう状態だと"self-"がつくのか?
問題の意味が今一つわからん。
533:132人目の素数さん
14/11/15 16:06:09.37
エスパー募集中
534:132人目の素数さん
14/11/15 16:14:17.93
DQNの思考解明に価値無し
535:132人目の素数さん
14/11/15 16:21:17.58
スレ主と504氏の間には通じ合うものがあるようだw
536:132人目の素数さん
14/11/16 07:12:49.45
>>510-535
スレ主です。
居ない間に、スレ進んでますね。ありがとう
今週も忙しいので、みなさまと遊ぶ暇が無いのが残念です
この調子だと、ガロアすれ初の1000達成かも・・
537:132人目の素数さん
14/11/16 07:21:20.14
>>515
504さま、どうも
丁寧にレスする暇がないので、簡単に
ガロア原論文の記号に従って書きます。(原論文は、彌永本などをご参照)
ガロア分解式 V=Aa+Bb+Cc・・・ (a,b,c・・・は、問題の方程式の根(簡単には、5次方程式と考えて下さい))
(a,b,c・・・)の置換をしてできる、例えば120の異なる値を使って
F(t)=(t-V1)(t-V2)(t-V3)・・・=0 の120次の方程式を、因数分解して解くことに問題を帰着する。これが、ガロア原論文の思想
(注:F(t)は、原論文と異なる記号を使っています。)
ガロアは、原論文の命題IIで、補助方程式の根rを添加して、数体の範囲を広げF(t)を因数分解することを考察する
F(t)=f(t,r)f(t,r')f(t,r'')・・・
ここで、r',r''・・・は、rに対応する同様な量という(共役数 URLリンク(ja.wikipedia.org) )
538:132人目の素数さん
14/11/16 07:34:41.97
>>537 つづき
で
ここで、補助方程式の根 r,r',r''・・・を全部添加して
F(t)=fo(t,r,r',r''・・・)fo(t,r,r',r''・・・)fo(t,r,r',r''・・・)・・・
と出来たとする
これを群論から見ると、元の方程式の群をG、fo(t,r,r',r''・・・)を変えない部分群をN、補助方程式の根 r,r',r''・・・の置換群Hとして
G=N+Nh1+Nh2・・・(e,h1,h2,・・・∈H。eは単位元で、N=Neと見てることもできる。)
539:132人目の素数さん
14/11/16 07:52:19.22
>>538 つづき
で
G=N+Nh1+Nh2・・・と類別(e,h1,h2,・・・∈H。eは単位元で、N=Neと見てることもできる)して、Gの要素は尽くされている
つまり、nを部分群Nの任意の要素として、nhiを作る。ここで、hi∈H i=0,1,2・・・ h0=e 。つまり、nhiは、Gの任意の元
nhiをG=N+Nh1+Nh2・・・の両辺に作用させる。左辺Gは当然不変で
G=(N+Nh1+Nh2・・・)*nhi=N*nhi+Nh1*nhi+Nh2*nhi・・・
で、勘が良い方はお気づきと思いますが、Nが正規部分群の性質Nh1=h1N を持っていると都合が良い
例えば、Nh2*nhi=h2N*nhi=h2N*hi=Nh2*hiなどとなって (途中N*n=Nを使用)
G=N*hi+Nh1*hi+Nh2*hi・・・という類別に変わります
540:132人目の素数さん
14/11/16 08:01:15.54
>>539 つづき (訂正:Nが正規部分群の性質Nhi=hiN を持っていると都合が良い )
で
G=N*hi+Nh1*hi+Nh2*hi・・・という類別で
hi,h1*hi,h2*hi・・・は、補助方程式の根 r,r',r''・・・の置換群Hに一致する
つまり、Nが正規部分群の性質Nhi=hiN を持っていると、Gの任意の元を作用させても類別は崩れずNのまま
それを現代数学用語では、商群を作るとか、準同型の核とかになりますかね
541:132人目の素数さん
14/11/16 08:13:42.17
>>540 つづき
さて、F(t)=fo(t,r,r',r''・・・)fo(t,r,r',r''・・・)fo(t,r,r',r''・・・)・・・ に戻ると
Nが正規部分群の性質を持っていないと、この式でGの任意の元を作用させて、問題の方程式の根(a,b,c・・・)の置換をすると
この因数分解が崩れてしまう(というか、矛盾が起きて、実は因数分解がうまく出来ない・・)
そうなると思うんですよね。ガロアはそれに気付いたんじゃないか? そこらが、ガロアが正規部分群の性質に気付いたきっかけかと
そう考えています。因数分解の辺りは、まだうまく説明できませんが、彌永本や、倉田本、矢ヶ部本などに説明がありますね。
542:132人目の素数さん
14/11/16 08:22:36.72
>>541つづき
>>291のご指摘はありがたかったです。全然理解できていないなと、基礎から見直しました
多少理解が進みましたかね
543:132人目の素数さん
14/11/16 08:37:06.82
>>488
スレ主です。あと、ここ
>>482に関連で
>>「要素が60個の集合には5次交代群と同型の群構造が入る」
>数学的陳述としては、不正解と判定されるだろうね
線形代数と群 (共立講座 21世紀の数学) (下記)P212 に
「Gを位数60の単純群とするときGはA5と同型である」(系7.42)とあります。”単純群”に限定すれば、正解ですよ
URLリンク(www1.ocn.ne.jp)
共立講座 21世紀の数学
URLリンク(www.amazon.co.jp)
線形代数と群 (共立講座 21世紀の数学) 単行本 – 1998/9/1 赤尾 和男 (著)
544:132人目の素数さん
14/11/16 08:42:43.31
>>543 つづき
(系7.42)の証明が、5シロー群PとS6の中への単射準同型を使って・・
簡単ではないですが・・
545:132人目の素数さん
14/11/16 10:06:58.59
>今週も忙しいので、みなさまと遊ぶ暇が無いのが残念です
暇が無いなら群論の入門レベルをちゃんと勉強した方がよいのでは?
2ちゃんなんかやってないで
546:132人目の素数さん
14/11/16 10:08:43.74
>>538-539 訂正
(e,h1,h2,・・・∈H。eは単位元で、N=Neと見てることもできる。)
↓
(e,h1,h2,・・・∈H。eは単位元で、N=Neと見ることもできる。)
547:132人目の素数さん
14/11/16 10:13:11.33
>>545
どうも
>暇が無いなら群論の入門レベルをちゃんと勉強した方がよいのでは?
>2ちゃんなんかやってないで
スレ主は、学生でもなく、教員でもなく、研究者でもない
暇が無いのは、仕事があるからで
群論も2ちゃんも、趣味というか娯楽なんだよ
群論と2ちゃんは同列だから、どちらを優先ということもないんだな。スレ主にとってはね。君には違うだろうが・・
548:132人目の素数さん
14/11/16 10:18:07.80
>群論と2ちゃんは同列だから、どちらを優先ということもないんだな。スレ主にとってはね。
だからいつまで経っても正規部分群一つ理解できないんですね、納得です。
549:132人目の素数さん
14/11/16 10:22:08.07
>>540 補足
>Nが正規部分群の性質を持っていないと、この式でGの任意の元を作用させて、問題の方程式の根(a,b,c・・・)の置換をすると
>この因数分解が崩れてしまう(というか、矛盾が起きて、実は因数分解がうまく出来ない・・)
対偶を考えれば良いのかな?
<命題>
補助方程式の根rの添加で因数分解できる→補助方程式の根を全て添加する→Nが正規部分群
<対偶>
Nが正規部分群でない→→補助方程式の根rの添加で因数分解できない
と
550:132人目の素数さん
14/11/16 10:26:43.61
>>548
>だからいつまで経っても正規部分群一つ理解できないんですね、納得です。
ああ、”正規部分群は難しい概念だよ
大学院に行ってからじゃないと無理 ”>>517かもな。ねえ、君
スレ主的には、>>540で正規部分群の概念は尽くされていると思うのだが
551:132人目の素数さん
14/11/16 10:54:35.96
>ああ、”正規部分群は難しい概念だよ
君の場合、概念云々の前に定義を憶えた方がいいのでは?
正しく憶えないと、全ての部分群が正規部分群になっちゃうぞ?
552:132人目の素数さん
14/11/16 10:59:00.33
>>543
あなたはまだ>>485で指摘した読み違えに気づいていない。
553:504
14/11/16 13:41:15.47
>>549
>>537-541を書いてもらって申し訳ないけど計算云々は昔やった計算のことを思い出せば十分で
全部のスレを見たわけではないが一番最初のスレで色々計算してたでしょう
>>549に関しても同様(最初のスレの268あたり以降)
スレリンク(math板:305番)
スレリンク(math板:326番) とかね
それで「同型だが、一致はしていない。」と当時は書いていたりする
>>529の問題はH1, H2, H3, etc.が全て一致すれば正規部分群("self-"conjugate -)
になるということ
スレリンク(math板:351番)
>恒等置換を含めると、H*S1に含まれる順列の間を移り変えるような置換は群になることがわかる。
>この群は、実際に計算してみればわかると思うが、実は、、
> S1*H*S1^{-1}
>に等しくなっているのである! ちなみにこの例では、Hと等しい。
スレリンク(math板:360番) などでも
H=H1={e, (αβγ), (αγβ)}までちゃんと書いた方が間違いは少なくなるはず
このことがこのスレの>>227以降につながる話だというのは分かるでしょ
554:132人目の素数さん
14/11/16 14:22:01.18
>>504がスレ主より自己中心的な人間であることはわかった。
555:132人目の素数さん
14/11/23 07:15:57.82
どうも
スレ主です
今週も、自宅残業であまり書けませんので、簡単に
>>551
>君の場合、概念云々の前に定義を憶えた方がいいのでは?
>正しく憶えないと、全ての部分群が正規部分群になっちゃうぞ?
>>291のご指摘はありがたかったです。全然理解できていないなと、基礎から見直しました( >>542 )
彌永ガロア本2巻P121に、「n>5のときAnは単純群」の証明の中で、変換g-1hg で
「τgは明らかにGからそれ自身への同型写像であって・・」と続く。ここらで気付かないといけないですよね
”φ(g・h)=σ^(-1)・g・h・σ=σ^(-1)・g・σ・σ^(-1)・h・σ=φ(g)・φ(h) ”>>291
ここらが、頻出テクニックですよね
556:132人目の素数さん
14/11/23 07:21:11.33
>>555つづき
URLリンク(ja.wikipedia.org) 正規部分群
定義 (コピペによる文字化けご容赦。原文を参照ください)
群 G の部分群 N が正規部分群であるとは、共軛変換(英語版)によって不変、すなわち N の任意の元 n と G の任意の元 g に対して、元 gng-1 が再び N に属するときにいう。
任意の部分群について、以下の条件はいずれも今上げた正規性の条件に同値である。このため、これらの条件のどれかを正規部分群の定義としてもよい。
G の任意の元 g に対して gNg-1 ⊆ N が成り立つ。
G の任意の元 g に対して gNg-1 = N が成り立つ。
G における H を法とする左剰余類全体の成す集合と右剰余類全体の成す集合とが一致する。
G の任意の元 g に対して gN = Ng が成立する。
N は G の共役類の和集合である。
G 上定義された群準同型で N をその核に持つものが存在する。
最後の条件は正規部分群の重要性の一端を示すもので、ある群の上で定義される準同型写像全体の内部的に分類する方法を与えている。
557:132人目の素数さん
14/11/23 07:37:35.63
>>556つづき
頻出テクニックの視点で言えば、
例えば、”gNg-1 = N”を、N → gNg-1 の置き換えで使う ( N → g-1Ng とも)
つまり、Nが正規部分群の場合には、Nと任意の元との積を計算するとき、Nの左右にgとg-1を出し入れ自由
gN = Ng も同じ。あるときは、gN → Ng。あるときは、Ng → gN。”gN = Ng”という等式を、二つに分解して覚えておく
似た頻出テクニックで、同型写像を全射かつ単射と二つに分解して覚えておく
集合で、G=NをG⊆NかつG⊇N分解するのと同じ
”gNg-1 = N”で止まっていると使えない・・
558:132人目の素数さん
14/11/23 07:49:15.55
>>552
スレ主です
>あなたはまだ>>485で指摘した読み違えに気づいていない。
うーん、>>485さんなの? 2ちゃんねる作法というか、こういう掲示板の文法を知らない初心者ですか?
まず、>>485は、自分の文章と、他人の文章からの引用は、読む人に客観的に分かるように表現されていない。その分別が自己流だね
それから、ごまかしているでしょ
”あなたはまだ>>485で指摘した読み違えに気づいていない ”といいつつ、自分の指摘がどういう指摘であったのか? 説明しようとしない
つまり、自分の勘違いを知られたくないんだ? だから説明したくないんだ
だったら、スルーしていいかな
559:132人目の素数さん
14/11/23 07:58:38.07
>>553
スレ主です
504さま、ご指摘ありがとうございます
確かに、2012に書いてますね。それがしっかり、深い理解になってなかったってことかな
今週は時間がないですが、しっかり復習してみます
560:132人目の素数さん
14/11/23 09:40:52.63
そりゃあ、正規部分群を知らないでずっと誤魔化していたスレ主さんですし
561:552
14/11/23 11:59:32.48
>>558
私は235なので、貴方の馬鹿げた罵倒には慣れている。
「要素が60個の集合には5次交代群と同型の群構造が入る」は正しい
それを>>482では不正解だと言って、位数60の群は本質的に何通りあるかについてのリンクを貼っている。
恐らく「要素が60個の集合には5次交代群と同型の群構造しか入らない」と読み違えたのだろうと推測して>>485で指摘した。
562:132人目の素数さん
14/11/23 15:53:14.86
自分より知識がある人のレスには、数学以外のことを持ち出して
煽るのが、昔からスレ主のワンパターンww
もう、スレ主=チンカスってとっくにバレてんのに、まだ上から目線だよwww
563:132人目の素数さん
14/11/27 23:14:51.65
数学板ID表示制検討スレッド
スレリンク(math板)
ID表示制導入投票スレ
スレリンク(vote板)
【投票期間:2014/11/27 0:00 ~ 2014/12/07 23:59】
564:132人目の素数さん
14/11/30 10:00:15.37
>>560
どうも。スレ主です
>そりゃあ、正規部分群を知らないでずっと誤魔化していたスレ主さんですし
いやいや、そんな生やさしいことではない
分かってなかったのは、正規部分群だけじゃない
共役類の根本のところが、きちんと理解できていなかったってことですよ
URLリンク(ja.wikipedia.org)
数学、とくに群論において、任意の群は共役類(きょうやくるい、英: conjugacy class)に分割できる。
同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする[1][2]。
群論の基本のところが理解できていなかったと
正規部分群の名前と定義は知っていた。が、きちんと消化することが出来ていなかった。上滑りだったんですね
良くある
定義は覚えたが、深いところまで理解できていないと
565:132人目の素数さん
14/11/30 10:14:28.87
>>564 つづき
それで、もう一度、教科書を読み直しました
エム・ポストニコフ「ガロアの理論」(東京図書)
古い本ですけどね。名著です。大学の図書館にあれば、手にとって見て下さい。私のは、明倫館で買った1971年第7刷です
URLリンク(yhsvtex.blogspot.jp)
エム・ポストニコフの『ガロアの理論』 言及有難う御座います。
(ハンドルネームはご自由に)
迷惑はお掛け致しません。奇妙なお願いだと 見做されることを 百^n も 承知の上の 真摯なお願いです。
URLリンク(d.hatena.ne.jp)
氏の
>今なら,半年準備すれば大学2年か3年の数学志望の学生にガロア理論を,単に理解するだけではなく,納得させる講義が出来る.
なる 真摯な 姿勢に 感動して この ような 真面目な お願いをしております。
566:132人目の素数さん
14/11/30 10:19:09.08
>>565 つづき
エム・ポストニコフ「ガロアの理論」(東京図書)で
へんなリンクを引用しましたが、いま読み返すと
二項拡大、巡回拡大、べき根拡大、ガロア拡大体が
しっかり理解出来ていなかったなと
いまさら思っております、はい
567:132人目の素数さん
14/11/30 10:34:12.12
すれ主です
>>562 ID表示賛成です。投票には行きませんが
>>560-562 さんへ、同じ穴の狢ですよ。仲間ですよ
(証明)
1.a∈{x|xはガロアすれの住人}
2.aが、ガロアすれで、つまらんカキコをしているとすれば、あきらかにヒマである
3.また、aがガロアすれで、粘着カキコをしているとすれば、あきらかに常にヒマで金が無い
4.金が無いところは、すれ主と同値。よって、同じ穴の狢である。QED
568:132人目の素数さん
14/11/30 10:47:18.69
つまらん
てか、全く進歩して無いな
569:132人目の素数さん
14/11/30 10:52:32.13
論証で面白い芸をするのは>>1には無理
>>1は自明なことしか書けない
570:561
14/11/30 11:23:07.74
>>567
不誠実極まりない。自分の間違いを認めなさい。
571:132人目の素数さん
14/11/30 12:05:09.03
>定義は覚えたが、深いところまで理解できていないと
自己評価が甘すぎる。君の場合、深いところも何も全くのデタラメだったやん
572:132人目の素数さん
14/11/30 12:29:08.49
>二項拡大、巡回拡大、べき根拡大、ガロア拡大体が
>しっかり理解出来ていなかったなと
それ以前の問題だおwww
573:132人目の素数さん
14/11/30 13:04:46.73
共役類、正規部分群、二項拡大、巡回拡大、べき根拡大、ガロア拡大体
を理解せずに、一体何を理解してガロア理論を語ってたんだろう?
574:132人目の素数さん
14/11/30 14:47:27.12
何も分かってないのに、コピペだけで偉そうに語る方法は身につけていたが、
スレ10の正規部分群で崩壊したw
575:132人目の素数さん
14/11/30 16:46:40.69
そう考えると、スレ主はサルマネ上級者だよな。
スレ10になるまでバレなかったんだから。
576:132人目の素数さん
14/11/30 17:10:03.10
まあコピペも巧くやれば早稲田の博士号も取れるし研究ユニットリーダにもなれる時代だからね
577:132人目の素数さん
14/11/30 18:29:48.20
スレ主です。今日は、まだ時間があるので・・
>>568-576
この調子だと、ガロアすれ初の1000達成かも・・>>536
今日は大漁だな、>>567に反応したね。隠しても分かるよ、"あきらかに常にヒマで金が無い"むじなくんたちよ
578:132人目の素数さん
14/11/30 18:48:22.24
スレ主です。
>>570 ??
あなたはまさか、あの高名な仙石60さまでは? 間違っていたら失礼
さて
”「要素が60個の集合には5次交代群と同型の群構造が入る」は正しい ”?? >>561
これを、”「位数が60の群には5次交代群と同型の群構造が入る」は正しい ”と解釈してみよう
反例がある
1.任意の自然数nに対して、位数nの巡回群が存在する
URLリンク(ja.wikipedia.org)
”任意の正整数 n に対して、位数が n の巡回群が(同型の違いを除き)ちょうど一つ存在し、また位数が無限大の巡回群がただ一つ存在する。”
2.当然n=60とすることができる。
3.従って、位数60の巡回群が存在し、要素が60個の集合であるが、5次交代群と同型の群構造は入らないことは明らか。
QED
(”単純群”に限定すれば、正解ですよ >>543 )
579:132人目の素数さん
14/11/30 18:48:39.03
もう釣れた宣言しかできなくなった哀れなスレ主
580:132人目の素数さん
14/11/30 18:50:12.78
糞馬鹿が偉そうにするスレか
581:132人目の素数さん
14/11/30 18:59:25.14
>>579-580
すれ促進ありがとう、むじなくん
だれが、一番ヒマで金が無いかすぐ分かるね
ところで、スレの勢いみたなのがあってね、一つの数値指標ではあるんだな、これ
きみも、スレの貴重な住人、かつ同じ穴の狢であることを、認定致します>>567
582:132人目の素数さん
14/11/30 19:01:00.53
勝利宣言して逃げるのは半島系に多い
・釣れた
・論破
…
よく見られるカキコ
583:132人目の素数さん
14/11/30 19:37:07.72
>>578
「要素が60個の集合には5次交代群と同型の群構造が入る」
と「要素が60個の集合には位数60の巡回群と同型の群構造が入る」
どちらも正しい。
まさか「AはBである」を否定するのに「AはCである」を示せば十分とか思ってないか?
584:132人目の素数さん
14/11/30 19:40:58.91
頭が弱いことを自ら宣伝していることに気が付かない>>1
585:132人目の素数さん
14/11/30 23:28:15.20
>>578
>さて
>”「要素が60個の集合には5次交代群と同型の群構造が入る」は正しい ”?? >>561
>これを、”「位数が60の群には5次交代群と同型の群構造が入る」は正しい ”と解釈してみよう
バカだなあ。解釈の仕方が間違ってる。詭弁もいい加減にしろ。
お前が言ってるのは、
・「同一の演算」が5次交代群の構造を持ち、なおかつ位数60の巡回群の構造を持つことは、あり得ない
ということであり、それはもともとの主張の反例に なってない。すなわち、
「要素が60個の集合には5次交代群と同型の群構造が入る」
「要素が60個の集合には位数60の巡回群と同型の群構造が入る」
という2つの主張は依然として正しい。これらの主張が言っているのは、要素が60の集合に
・ある演算を入れれば、5次交代群と同型
・別の演算を入れれば、位数60の巡回群と同型
っていう話だよ。2種類の「違う演算」を考えれば、
演算ごとに違う構造が入って当たり前だろ。
単なる集合に "群構造が入る" ってのがどういう意味なのか、全然わかってないじゃん。
586:132人目の素数さん
14/11/30 23:34:13.79
魯鈍には口だけは達者なのが居るが…
ここの>>1がまさにそれか
587:132人目の素数さん
14/12/01 00:54:41.73
>>578
> (”単純群”に限定すれば、正解ですよ >>543 )
単純群に限定するという制約は何から来てるの?
(過去レスを追ってみたが、スレ主さんが発散させるものだから、もう何がなんだか。。。)
588:132人目の素数さん
14/12/01 06:09:19.09
1は魯鈍だそうです。
意味の分からない人は辞書で調べましょう。
589:132人目の素数さん
14/12/05 23:07:32.07
>>584-588
ども。ご苦労です。同じ穴の狢くん。スレ主です
メインがsageで、たまにageで、一人二役やってんの?
彼女いないんだろうね。で、金もない。ヒマはあるのか?
まあ、遊んでやるから、じっくりまた~り、して行きな
同じ穴の狢くんがいるから、本当に初の1000達成できるかもな
そしたら、また次スレだな
590:132人目の素数さん
14/12/05 23:30:24.58
池乃めだかさんのギャグみたいだ。
591:132人目の素数さん
14/12/06 00:01:00.97
>>587
ども。スレ主です
>単純群に限定するという制約は何から来てるの?
URLリンク(ja.wikipedia.org)
最小の非アーベル単純群は位数60の交代群 A5であり、任意の位数60の単純群は A5に同型である。[2]
2^ Rotman (1995), p. 226 URLリンク(books.google.co.jp)
592:132人目の素数さん
14/12/06 00:07:56.43
>>585
ども。スレ主です
同じ穴の狢くん、ご苦労です
URLリンク(d.hatena.ne.jp)
2008-07-06 位数60の単純群 その1
前にBurnsideが著作のなかで位数60の群の分類はいい演習になると書いていることを紹介したが,私が探した範囲では,完全な記述はRed cat氏の論文以外には見たことがない.
再度ここに紹介しておく.”位数120までの群の分類” URLリンク(d.hatena.ne.jp)
さて,位数60の群は全部で13ある.この中で単純群であるものは,5次の交代群A_5のみである.
実はこれが非可換単純群で最小位数のものとなっている.それ以外は自明でない正規部分群を持つわけであるが,(略)
593:132人目の素数さん
14/12/06 00:34:06.48
>>592
つづき
URLリンク(d.hatena.ne.jp)
2008-07-11 位数60の単純群 その2
5-Sylow部分群は6個あり,5-Sylow部分群の集合にはGの内部自己同形による置換が引き起こされるため・・・
594:132人目の素数さん
14/12/06 00:38:44.15
>>591
いやだから何で「単純群ならば・・・」を言い出したのかを聞いてるんだけど
あんたでしょ?言い出したのは
595:132人目の素数さん
14/12/06 00:38:47.75
>>593
つづき
>>543に書いたことを再度引用する
線形代数と群 (共立講座 21世紀の数学) (下記)P212 に
「Gを位数60の単純群とするときGはA5と同型である」(系7.42)とあります。”単純群”に限定すれば、正解ですよ
URLリンク(www1.ocn.ne.jp)
共立講座 21世紀の数学
URLリンク(www.amazon.co.jp)
線形代数と群 (共立講座 21世紀の数学) 単行本 – 1998/9/1 赤尾 和男 (著)
544 :132人目の素数さん:2014/11/16(日) 08:42:43.31
>>543 つづき
(系7.42)の証明が、5シロー群PとS6の中への単射準同型を使って・・
簡単ではないですが・・