14/10/18 20:55:35.05
>>231
つづき
スレ主です。1列目と2列目に注目してみよう
1 2 3 4 5,
1 3 5 2 4,
という置換(1→1, 2→3, 3→5, 4→2, 5→4)を、σとしよう
1列目の巡回群をC5と書く
ここで、>>230のように、上の行1 3 5 2 4, を付けたと想像すると
2列目=σ-1・C5・σ=C5(巡回群) (σ-1・C5・σは、σによる変換)
に、自然と気付く
ここから、ガロアが正規部分群の概念に気付いても不思議ではない
σによる変換が見やすい。これが、ガロア記法の大きな利点と考える
(この説明が詳しいところが、彌永本の良いところ)