14/10/12 20:20:28.07
>>96
一行目と三行目からは逃げたな。
二行目に関していうと、考えるときの表記と発表するときの表記は大きく異なるのがむしろ通常である。
良い数学者の研究メモが宝の山な理由の一つである。
158:132人目の素数さん
14/10/12 20:23:09.83
>>140
むしろリンク貼りとコピペだけでOK。
スレ主の地の文は一切不要。
159:132人目の素数さん
14/10/12 20:25:51.89
何の権利でスレ主などと自称してるんだ?
160:132人目の素数さん
14/10/12 20:29:09.01
便所のらくがき権を行使してるだけだろ
161:132人目の素数さん
14/10/12 20:54:44.67
>>156
人のことを見識不足と断じておきながら
>ガロア理論の中で、行列論とか固有値論とかを使って理論構築している部分があるなら教えて欲しい。
には答えない。これを卑怯者と云わずして何と云おう。
>まあ、マーケティング用語でいうところの”つかみ”ってやつだ
>読む人の気を引く部分を引用しているんだ。読者が反応しそうなキーワードを含んでいて、かつスレの内容を予測させ、かつ面白そうと思わせる部分
>そういう部分を、時間を使わずに、適当に決めているんだ
なるほど卑怯者らしく屁理屈で逃げよった。
162:132人目の素数さん
14/10/12 20:59:43.27
>行列論と線型代数は、ほぼオーバーラップしているよ(「厳密には違う」という主張もありだが、そう強調する必要がある場面は少ない)。
>それがスレ主の理解だ
よくも恥ずかしくもなくこういうことを言えるもんだ
もう少し勉強してから書き込めよ
163:132人目の素数さん
14/10/12 23:15:34.97
>>156
>はっきり言って、見識不足だと
>それで、あなたの見識が見えるから
未だ見えてないのにはっきり言えるとは驚きだ
164:132人目の素数さん
14/10/13 08:25:33.56
どうも、スレ主です
いやー、しばらく放置プレイしていたら、勝手に盛り上がってくれるね
が、適当にまとめレスするわな
>>157 意味不明(理解不能)。>>95に同じ。「小物を動かしたり」?分からん
「ガロアが彼の記法のまま考えている」?については、>>96”我々には、残されたガロア論文しかない ガロア論文は、彼の記法で書かれている”が答えだ
>>160 "便所のらくがき権を行使してるだけ"は、正解だな。そして、何に回答し何をスルーするかも、スレ主の権利行使だよ
>>163 あんたも逃げが上手いね。が、ごたくは>>156の質問に答えてからにしてくれ
165:132人目の素数さん
14/10/13 08:43:07.34
>>120 補足つづき
どうも、スレ主です
ガロア原論文P41(彌永昌吉本*)では P249)
素数次n=5の場合に、可解になる群を彼の記法(置換の記法)を使って書いている
1列目 2列目 3列目 4列目
a b c d e, a c e b d, a e d c b, a d b e c,
b c d e a, c e b d a, e d c b a, d b e c a,
c d e a b, e b d a c, d c b a e, b e c a d,
d e a b c, b d a c e, c b a e d, e c a d b,
e a b c d, d a c e b, b a e d c, c a d b e,
今日は、ここを少し書こう
*)ガロアの時代 ガロアの数学〈第2部〉数学篇 (シュプリンガー数学クラブ) 単行本 – 2002/8/1 彌永 昌吉 (著)
URLリンク(www.amazon.co.jp)
166:132人目の素数さん
14/10/13 09:08:59.07
>>120 補足つづき
どうも、スレ主です
ガロア論文では、k→ak+bの線形置換の具体例として、これを書いた
a b c d e,のままでは、意味が分かりにくい。そこで、数字に変えると
1列目 2列目 3列目 4列目
1 2 3 4 5, 1 3 5 2 4, 1 5 4 3 2, 1 4 2 5 3,
2 3 4 5 1, 3 5 2 4 1, 5 4 3 2 1, 4 2 5 3 1,
3 4 5 1 2, 5 2 4 1 3, 4 3 2 1 5, 2 5 3 1 4,
4 5 1 2 3, 2 4 1 3 5, 3 2 1 5 4, 5 3 1 4 2,
5 1 2 3 4, 4 1 3 5 2, 2 1 5 4 3, 3 1 4 2 5,
これ分かりますか
167:132人目の素数さん
14/10/13 09:22:57.80
>>166 つづき
どうも、スレ主です
1列目 2列目 3列目 4列目
1 2 3 4 5, 1 3 5 2 4, 1 5 4 3 2, 1 4 2 5 3,
2 3 4 5 1, 3 5 2 4 1, 5 4 3 2 1, 4 2 5 3 1,
3 4 5 1 2, 5 2 4 1 3, 4 3 2 1 5, 2 5 3 1 4,
4 5 1 2 3, 2 4 1 3 5, 3 2 1 5 4, 5 3 1 4 2,
5 1 2 3 4, 4 1 3 5 2, 2 1 5 4 3, 3 1 4 2 5,
1)各列で見ると、巡回置換になっている
2)1列目を基本にして、k→ak+b mod5 で考える。(ガロア論文では、mod5は略されているが)
3)2列目は、ak+b=2k-1 (a=2,b=-1) mod5
3)3列目は、ak+b=4k-3 (a=4,b=-3) mod5
4)4列目は、ak+b=8k-7 (a=8,b=-7) mod5
これ分かりますか
168:132人目の素数さん
14/10/13 09:30:23.76
>>167 つづき
どうも、スレ主です
mod5 なら、5≡0, 8や7についても同様に8≡3, 7≡2 という突っ込みはありだが
ここではわかりやすさを優先した
5次方程式なので、5が見えた方が分かりやすい
また、1列目から2列目のak+b=2k-1を、同じように2列目に施して3列目、3列目に施して4列目が得られる
そういう関係も、見やすいように
169:132人目の素数さん
14/10/13 09:53:01.36
>>168 つづき
どうも、スレ主です
ここの説明は、アルティン本(下記)がかなり詳しい。第3章の定理43の後から定理46までだ
URLリンク(book.akahoshitakuya.com)
ガロア理論入門 (ちくま学芸文庫)
170:132人目の素数さん
14/10/13 10:07:12.70
>>169 つづき
どうも、スレ主です
> URLリンク(book.akahoshitakuya.com)
> ガロア理論入門 (ちくま学芸文庫)
おれの持っているのは、文庫じゃないが、寺田 文行が、”線形群”という訳語を使っているが、いまでは不適切だろう
(文庫でも、おそらく同じ用語を使っていると思う。アルティンの原文がどうか不明だが)
メタ巡回群が、学術用語としては正確だ(”線形群”は現在では別の意味になる)
URLリンク(en.wikipedia.org)
6.4 Metacyclic and polycyclic groups
URLリンク(en.wikipedia.org)
171:132人目の素数さん
14/10/13 10:47:45.43
>>164
自分の発言が完全に自己矛盾してることに気づかないとはね
やれやれ、こりゃ駄目だ
172:132人目の素数さん
14/10/13 11:13:18.68
>>169 つづき
どうも、スレ主です
メタ巡回群で、ガロア論文通りの記法で説明しているのが、下記Yuri Burda P13。
”x → ax + b”metacyclic permutation group と
URLリンク(arxiv.org)
URLリンク(arxiv.org)
Signatures of Branched Coverings∗. Yuri Burda, Askold Khovanskii July 6, 2012
メタ巡回群は、日本語文献ではあまり使われていないが、エム・ポストニコフ本(下記。下記は過去なんども引用したが再度引用する)
P146だ。エム・ポストニコフは、私も古書だが、数式の展開が丁寧だ。そこに価値がある
URLリンク(d.hatena.ne.jp)
青空学園だより 2011-08-05 ガロア理論
抜粋
ガロア理論については思い出がある.エム・ポストニコフの『ガロアの理論』(1964年4月25日,東京図書出版発行)を高校3年生のときに買った.大学に入ったらこの本を読もうと,
それで1回生の夏にようやくの思いで『ガロアの理論』を読んだのだ.
ところが,これが読めてしまうのだ.何も難しいことはない.第1部「ガロア理論の基礎」も読めた.
代数的生成拡大が代数的単純拡大であることの証明に感心した他はすらすら読める.第2部「根号による方程式の解法」も読めるのだ.
P47~P48にはガロア対応の意義が書かれてはいるが,それを深くつかむことが出来ていなかった.
そして思った.一体ガロアの理論とは何なんだ.何がそれまでの数学からの飛躍であり,何が新しいのだ.
それがわからなかった.ガロア理論は理解出来た.しかし納得は出来なかった.
173:132人目の素数さん
14/10/13 11:45:16.65
>>164
置換群を考えるとき、物を動かして考えたりしないの?紙に書くだけ?
174:132人目の素数さん
14/10/13 11:51:04.74
>>172 つづき
どうも、スレ主です
線形置換くらいは、良いと思う
現代数学の系譜11 ガロア理論本でも線形置換だ
彌永本>>165 P270で、”線形群”と書いている。昔の用語だろうか?
倉田本>>93 P182では、線形置換群と書いているね。
Edwards本>>45 P93では、linear substitution と書いている
175:132人目の素数さん
14/10/13 11:52:11.24
>>170
オリジナルしか手元にないけど、線形群ってどこ?
176:132人目の素数さん
14/10/13 12:02:31.42
>>175
どうも
オリジナルのアルティン 東京図書版で
手元にあるのだと、P103 補題の2行上、P104 定理45だな
177:132人目の素数さん
14/10/13 12:06:41.58
なるほど、真面目に調べるなということですね
178:132人目の素数さん
14/10/13 12:13:01.77
>>172 つづき
どうも、スレ主です
いまどき、”線型群”( linear group )で検索すると、下記がヒットする。ガロアの記述する”Metacyclic_group ”はヒットしないんだな
URLリンク(ja.wikipedia.org)
一般線型群
URLリンク(en.wikipedia.org)
General linear group
179:132人目の素数さん
14/10/13 12:55:20.49
>>172 つづき
どうも、スレ主です
Artin本に近いのがヒット、下記。
"group of linear substitutions"とある。これを、”線型群”と訳したんだろうね
URLリンク(www-fourier.ujf-grenoble.fr)
Artin M. Galois theory (2ed, London, 1944 Sixth Printing, January 1971)(86s).pdf
このP79 "G is a group of linear substitutions"
因みに、ここは第3章 APPLICATIONS By A. N. Milgram.,なんだな。つまり、第3章ではないよと
URLリンク(books.google.co.jp)
googleのViewを見る限り同じだね
Milgramは下記だな
URLリンク(en.wikipedia.org)
180:132人目の素数さん
14/10/13 13:22:52.07
>>177 つづき
どうも、スレ主です
おそらく、寺田や彌永の現役時代の数学業界では、”線形群”だったんじゃないかな?
日本の教科書では、メタ巡回群と書いている本は、記憶にないし
でも、世界はメタ巡回群へ移ったんだろう。特にソ連系は
アルティン本でも、メタ巡回群は使っていない
そういえば、いま手元のCox和本では、索引でメタ巡回群 P164,166 とあるね。現在はこれだね
URLリンク(www.amazon.co.jp)
181:132人目の素数さん
14/10/13 13:32:12.36
>>173 つづき
どうも、スレ主です
置換の話は、中学か高校で聞いた気がする(偶置換と奇置換に分けられるとか、互換の積に分けられるとかね)
教師が脱線がすきだったんだ
で、いまさら「物を動かして」はないんだ。群論や置換群の本もかなり読んだしね
182:132人目の素数さん
14/10/13 13:51:02.79
>>171 つづき
どうも、スレ主です
「完全に自己矛盾」は、証明できないよ
∵日常会話のレベルだからね。用語は、未定義だ。お互い好きに定義できる。従って、証明は不可能!
まあ、>>162の>行列論と線型代数は、ほぼオーバーラップしているよ(「厳密には違う」という主張もありだが、そう強調する必要がある場面は少ない)。>>150
だね。で、初学者のために書くと、行列は下記。「20世紀の初頭には行列は線型代数学の中心的役割を果たすようになった」と。これに反論したいのか?
(因みに、行列と行列式は違うとよく言われる。そういう立場もありだ。が、下記は、行列と行列式とを統合したより高い視点から書かれているんだ)
URLリンク(ja.wikipedia.org)
数学の線型代数学周辺分野における行列(ぎょうれつ、英: matrix)は、数や記号や式などを「行」と「列」に沿って矩形状に配列したものである。
歴史
紀元前300年から紀元200年の間に書かれた中国の書物『九章算術』は連立方程式の解法に行列を用いた最初の例であるといわれ[1]、
それには行列式の概念が、日本の関が1683年に[要出典]、ドイツのライプニッツが1693年にそれぞれ独立に著すよりも実に1000年以上も前に扱われていた。
クラメルが有名な公式を生み出すのは1750年のことである。
行列論の初期においては、行列よりも行列式のほうに非常に重きが置かれており、
行列式から離れて現代的な行列の概念と同種のものが浮き彫りにされるのは1858年、ケイリーの歴史的論文 Memoir on the theory of matrices(「行列論回想」)においてである[2][3]。
20世紀の初頭には行列は線型代数学の中心的役割を果たすようになった。
183:132人目の素数さん
14/10/13 14:15:51.35
>>182 つづき
どうも、スレ主です
どういう立場で数学を勉強しているか知らないが、もっと頭を軟らかくしておく必要があると思うよ
例えば、下記
URLリンク(gcoe-mi.jp)
九州大学グローバルCOEプログラム マス・フォア・インダストリ教育研究拠点 ニュースレター 2012.3
佐伯 修
他分野との連携、あるいは企業との共同研究などほとんど経験したことがなく、何となく船に乗り遅れたような気持ちになっていた。
そんなとき、企業との共同研究の話が舞い込んできた。新日本製鐵株式會社(以下、新日鐵と略記)との、材料科学への数学適用に関する共同研究である。
(コメント:企業との共同研究で、”私の専門分野である位相幾何学(トポロジー)が役に立ちそうな問題を少しずつ理解していくことができた”とある)
URLリンク(www.math.sci.hokudai.ac.jp)
サイエンストピックス 言語比較の数学的基礎 吉田知行(数学専攻) 北大 2005
P13 6 群論の登場, P15 7 対称群を使うシフト法 あたりを読んでみて(引用が多量になるので省略する)
184:132人目の素数さん
14/10/13 14:40:44.21
>>183 つづき
どうも、スレ主です
183の例で言いたいことは、数学はいろんな分野に使えるってことだな
その中で、現実の問題は教科書とは違う。いままでの知識で解けなければ、新しい理論を作る場合もあるだろうし
途中まで理論で解いて、あと近似解とかあるいは数値解とか
あるいは、問題を少し易しくして、モデル化するとか
現実の問題は、頭の柔らかさが必要だよ
で、ここへ>>153>ガロア理論の中で、行列論とか固有値論とかを使って理論構築している部分があるなら教えて欲しい。
アルティン本>>169は、第一章が線形代数だが、定理4で行列を説明している。5節が非同次線形連立方程式だ。
6節が、行列式だよ。アルティン本をちらっとでも見てみな
2節と4節がベクトルに関する事項だ。が、ご存知のように、m行n列の行列で、n=1のときはベクトルと見なせるという話は基本だ(m=1の場合も)
だから、行列論をやると、そこには必然ベクトルの話も含まれると
スレ主の立場では、行列論の中にベクトルも、行列式も含まれる(>>182)
じゃあ、線形代数から、行列とベクトルと行列式に関係するところを抜いて、一体なにが残ると思っているんだ? これが>>156の逆質問の意味だ
185:132人目の素数さん
14/10/13 15:28:54.42
>>181
頭を柔らかくするには、今さらと言わず、物を動かして操作感覚を掴んでおくことを強くすすめる。
186:132人目の素数さん
14/10/13 17:24:52.56
>>184
アルティン本の紹介有難う。
だがそれじゃ>>153の回答としては不合格と言わざるを得ないな。
第一章が線型代数で、その中の節に行列なり行列式なり連立方程式なり出てくる”だけ”だろ?
>>153をもう一度よく読んでごらん。”それら行列、行列式、連立方程式の理論が、ガロア理論の構築過程のどこに使われているか”を答えないと合格はあげられない。
>線形代数から、行列とベクトルと行列式に関係するところを抜いて、一体なにが残ると思っているんだ?
わかってないようだからヒントをあげよう。線型空間の定義に行列や行列式の概念は必要かね?
>スレ主の立場では、行列論の中にベクトルも、行列式も含まれる(>>182)
ベクトルはともかく、行列式を行列のカテゴリに入れるのはちょっとまずいのでは?
ヒントをあげよう。行列式の定義に行列の概念は必要かね?
あるいは行列と行列式の歴史を調べてみることをお勧めする。
187:132人目の素数さん
14/10/13 20:23:35.00
>>186
本当の意味の愚か者を見た
188:132人目の素数さん
14/10/13 20:25:07.59
>>186
スレ主より馬鹿なんてなかなかいないぞ
189:132人目の素数さん
14/10/13 21:04:18.50
どうも、スレ主です
このスレ全部読み返したところ私が完全に間違えてました
回線で首吊ってお詫びry
190:132人目の素数さん
14/10/17 22:19:38.61
どうも。お久しぶり。スレ主です
どうも錯綜しているから、解きほぐそう
ここに戻る
>>150
>行列論と線型代数は、ほぼオーバーラップしているよ(「厳密には違う」という主張もありだが、そう強調する必要がある場面は少ない)。
>それがスレ主の理解だ
で、いまどき、行列論の本も無いだろうなと思っていたが、東京OAZOの丸善に寄ったらあったね。下記
URLリンク(www.amazon.co.jp)
復刊 行列論 2010/1/23 遠山 啓 (著) 共立出版
目次
第1章 ベクトルと一次変換
第2章 行列
第3章 行列式
第4章 線型空間とグラースマンの代数
第5章 単因子
第6章 正規行列
第7章 固有値問題
第8章 テンソル,直積
第9章 行列の解析
第10章 函数空間
191:132人目の素数さん
14/10/17 22:29:07.32
>>190 つづき
どうも、スレ主です
で、線形代数
URLリンク(www.amazon.co.jp)
線形代数学(新装版)川久保 勝夫 日本評論社 2010/8/20
目次
ベクトル
行列
線形写像
行列式
連立1次方程式
ベクトル空間
ランク
固有値と固有ベクトル
内積
正規行列の対角化
ジョルダンの標準形
192:132人目の素数さん
14/10/17 22:36:06.03
>>191 つづき
どうも、スレ主です
遠山 啓先生の「行列論」は手にとって見たけど、内容は「いろいろ書いてあるね」という印象だった。ここまで行列論か?という気もした
が、なにを「行列論」に盛り込むかは、遠山 啓先生一流のお考えがあるのでしょう。まあ、個人の思想の差も当然あるだろう
で、川久保 勝夫先生の「線形代数」まあ、標準的ですかね。まあ、イメージ通りだ
これが、スレ主の
>>150
>行列論と線型代数は、ほぼオーバーラップしているよ(「厳密には違う」という主張もありだが、そう強調する必要がある場面は少ない)。
>それがスレ主の理解だ
への補足だよ
193:132人目の素数さん
14/10/17 22:42:48.70
>>192 つづき
どうも、スレ主です
で、ここに戻る
>>152
>行列論も行列式論も固有値論も線型空間論も線型代数の要素だが、ガロア理論で使われるのは線型空間論だけ
「行列論」を狭く考えすぎだろう
遠山 啓先生の「行列論」のように、広く考えなさいと
194:132人目の素数さん
14/10/17 22:58:21.04
>>193 つづき
どうも、スレ主です
で、ここに戻る
>>143
>ガロア理論では拡大体を基礎体上の線型空間ととらえて理論展開するから、線型空間論が使われる。
>一方で、一次連立方程式論が関係するのは主に行列論だから違うんじゃないの?と言ったまでだ。
遠山 啓先生の「行列論」は、”第4章 線型空間とグラースマンの代数 ”という章があるよ
で、ここに戻る
>>156
「逆質問で悪いが、行列論と線型代数の差分を書いてくれ
それで、あなたの見識が見えるから」
答えを待つ
195:132人目の素数さん
14/10/17 23:32:32.09
自分で書いた>>190をよく見てごらん
「行列論」の中に「行列」という章があるだろ...まだわからん?
196:132人目の素数さん
14/10/18 01:08:40.75
>>194
そんな質問するようなのがガロア理論とは片腹痛いわ
197:132人目の素数さん
14/10/18 09:37:38.03
>>195-196
スレ主です
同一人物だと思うけど、数学科2年くらいかね?
視野狭い。まだ、行列とか線形空間とか、未消化。自分が、大学で教えられた世界がすべてだと。
まあ、卒業のころに、戻ってきな。
スレ主としてはスルーしても良いけど、ここはROMの初学者もいるだろうから、間違った意見をスルーしても誤解するとまずいと思って詳しく補足した
これくらい書いておけば、もう良いだろう。このあとは別の話題に移る
>「行列論」の中に「行列」という章があるだろ...まだわからん?
自分が混乱しているってことでしょ。スレ主は、「行列論」と「行列」とは、意識して書き分けているよ
そして、「行列論」という本に、「行列」という章があってなんの不思議があるんだ?
198:132人目の素数さん
14/10/18 10:30:46.33
やはりわかってなかったか、頭悪いのお
>>190、>>191 を見ればわかるように、「行列論」には「線型代数学」の意味と、その一部分(行列の章に相当)の意味がある。
>行列論も行列式論も固有値論も線型空間論も線型代数の要素だが、ガロア理論で使われるのは線型空間論だけ
という文脈で「行列論」をどちらの意味に解釈すべきかは、>>190、>>191を見れば明らかだろう。
行列と行列式と固有値と線型空間を横並びにしているのだから、後者と解釈すべきだろう。
よほど日本語に不自由でなければ
>視野狭い。まだ、行列とか線形空間とか、未消化。自分が、大学で教えられた世界がすべてだと。
言葉の解釈の仕方だけの話で視野がどうとかアホかよ
>スレ主としてはスルーしても良いけど、ここはROMの初学者もいるだろうから、間違った意見をスルーしても誤解するとまずいと思って詳しく補足した
お前自身が誤解して間違った意見書いてんだろw 初学者の心配する前にお前の心配しろw
199:132人目の素数さん
14/10/18 10:41:55.75
お前馬鹿だから
>行列論と線型代数の差分を書いてくれ
にも答えといてやる
>>190ないし>>191の全体が線型代数、行列の章が行列論
>スレ主は、「行列論」と「行列」とは、意識して書き分けているよ
お前は行列の章に書かれている内容を「行列」と書き表すのか?その方がよほど誤解を招くと思うがな
200:132人目の素数さん
14/10/18 11:29:34.35
>>180
つづき
スレ主です
前スレでGAPくんが来てくれて、しばらく途切れていたが、古典ガロア理論の話題に戻ろう
いまどきなら、現代数学の系譜11 ガロア理論>>1より、下記彌永の方が原論文に接しやすいのかもしれない
URLリンク(www.amazon.co.jp)
ガロアの時代 ガロアの数学〈第2部〉数学篇 (シュプリンガー数学クラブ) 単行本 – 2002/8/1 彌永 昌吉 (著)
彌永 P236にガロア分解式( Galois Resolvent )が記されている
V=Aa+Bb+Cc+・・・、
ここにA,B,C・・・は、有理数係数。a,b,c・・・は、問題となっている重根のない代数方程式の根
じつは、ガロア分解式( Galois Resolvent )と呼ばれているので、ガロアの創案と思っていた
が、よく読むと、「この命題はアーベルの楕円関数に関する遺稿の中で、証明なしに述べられている」と書かれてあることに気付いた
ネット検索すると、下記 Speech of Prof. Dr. P. L. M. Sylow があった
file:///C:/Users/seta/AppData/Local/Temp/1902_Sylow.html
201:132人目の素数さん
14/10/18 11:31:42.32
数学史やりたいなら高瀬先生に相談汁
202:132人目の素数さん
14/10/18 11:37:01.77
>>200
つづき
スレ主です
下記 Speech of Prof. Dr. P. L. M. Sylow より抜粋
file:///C:/Users/seta/AppData/Local/Temp/1902_Sylow.html
Abel’s favorite theme was, however, the theory of algebraic equations. Also here he had worked from first principles.
Gauss and Cauchy had given proofs of the Fundamental Theorem of Algebra, to which later mathematicians only have had little to add.
Gauss had in addition exhaustively treated the equations connected to the problem of circular division into equal parts,
Abel proved the impossibility of a general method of solving equations of degree higher than four by radicals, and thereby brought the theory to a rather new level.
He then set out to determine those equations which can be solved in that way,
and discovered the most important general results in this new field. But death prevented him to present his findings,
so that his successor Galois, one of the most outstanding minds of the past century, had to redo those discoveries once again:
because Galois died before the collected works of Abel were published for the first time. Furthermore it was Abel, who first taught the mathematicians to use the auxiliary tool,
which now has been named the Galois resolvent; Galois himself expressively announced that the idea was Abel’s. Finally Abel learned to solve that class of equations, which now bears his name.
His other theories gave him rich opportunity to apply this discovery and show its worth.
But much more important is that the two latter discoveries: Galois’ Resolvent and the theory of Abelian equations, were the two most important tools for Galois,
when he gave the theory of equations its final form and thereby gave the foundation for the rise of our contemporary theory of groups.
203:132人目の素数さん
14/10/18 11:43:43.15
>>202
つづき
スレ主です
Prof. Dr. P. L. M. Sylow は下記だろう(群論で有名)
URLリンク(en.wikipedia.org)
Peter Ludwig Mejdell Sylow (12 December 1832 – 7 September 1918) was a Norwegian mathematician who proved foundational results in group theory. He was born and died in Christiania (now Oslo).
Sylow was a high school teacher in Halden, Norway, from 1858 to 1898, and a substitute lecturer at Christiania University in 1862, covering Galois theory.
It was then that he posed the question that led to his theorems regarding Sylow subgroups. Sylow published the Sylow theorems in 1872,
and subsequently devoted eight years of his life, with Sophus Lie, to the project of editing the mathematical works of his countryman, Niels Henrik Abel.
He was appointed professor of Christiania University in 1898.
204:132人目の素数さん
14/10/18 11:55:39.12
>>203
つづき
スレ主です
Speech は、おそらく1902年
”subsequently devoted eight years of his life, with Sophus Lie, to the project of editing the mathematical works of his countryman, Niels Henrik Abel. ”
とあるので、話は合う
>>202から引用する
”Furthermore it was Abel, who first taught the mathematicians to use the auxiliary tool,
which now has been named the Galois resolvent; Galois himself expressively announced that the idea was Abel’s.”
”But much more important is that the two latter discoveries: Galois’ Resolvent and the theory of Abelian equations, were the two most important tools for Galois,
when he gave the theory of equations its final form and thereby gave the foundation for the rise of our contemporary theory of groups.”
1902年には、「Galois’ Resolvent」になっていたみたいだね
が、Sylow先生は、明確に”the idea was Abel’s.”としている
「アーベルの楕円関数に関する遺稿」に、簡単にアクセスできるかよく分からない(調べるのも時間がかかりそう)
まあ、これを正しいとしようと思う
で、「Galois’ Resolvent」をアーベルが考えていたとすれば、ガロア理論に近いところには到達していたように思う
アーベルが長命だったらと・・
205:132人目の素数さん
14/10/18 12:09:12.79
>まあ、これを正しいとしようと思う
勝手な決め付けを論拠に結論を出す
こいつ朝鮮人か?
206:132人目の素数さん
14/10/18 12:41:23.07
引用、参考文献を明示しながらキチンと考証しないと半島のウリナラファンタジーと変わらん。
思い込みと願望をいきなり真実と結論するのが半島人。
高瀬氏でなくても良いが文献学の手法を学ぶ必要がある。
最もらしさを装った嘘、間違いにならないためにもね。
そういうのは害悪だから。
207:132人目の素数さん
14/10/18 12:44:29.93
>>204
つづき
スレ主です
アーベルが長命だったら、Abel's Resolvent と呼ばれていたはず
208:132人目の素数さん
14/10/18 13:04:42.07
>>205-206
スレ主です
簡単な話だ。「君は来るところを間違えている」ってこと
2ちゃんねるをなんだと思っている? ここは天下のチラシの裏=スレ主のメモ帳だ
玉石混淆=玉と石の見分けができない、君みたいな人の来るところじゃ無い
99%リンクは付けている。疑問があれば、リンクを開くか、自分で調べるか、身近の詳しい人に聞け!
はっきりいうが、「ここを学会と勘違いしているのか? おいおい!」だ。 ”引用、参考文献を明示しながらキチンと考証”だと? 気は確かか?
君のレベルなら、こんなところを徘徊せず、図書館で勉強するんだな。スマホの電源落としてね! 君のレベルなら落第の心配があるだろう
209:132人目の素数さん
14/10/18 13:05:31.32
数学とは正しい命題の積み重ねで理論構築する学問
スレ主さんは数学に向いてないんじゃない?
210:132人目の素数さん
14/10/18 13:13:50.55
向いてねーな確かに。
頭悪いのはもちろんだが、論証への熱意に欠けてるのがな。
211:132人目の素数さん
14/10/18 13:25:48.96
>>207
スレ主です
「Galois’ Resolvent」を調べる過程で引っかかった面白そうな記事をメモしておく
下記のP10、11の図が綺麗だ
URLリンク(www.alexhealy.net)
Unpublished notes and surveys
Resultants, Resolvents and the Computation of Galois Groups (pdf, ps)
My final paper for Math 250a, Higher Algebra, in the fall of 2001.
URLリンク(www.math.harvard.edu) Home page for Math 250: Higher Algebra (2001-2002)
URLリンク(www.alexhealy.net)
Alex Healy In June 2007, I graduated from the theory of computation group at Harvard.
URLリンク(www.alexhealy.net)
212:132人目の素数さん
14/10/18 13:32:58.19
精神病質者や空想虚言者を相手にしても意味ないよ
URLリンク(ja.wikipedia.org)精神病質
>>1の書き込みは上記中の特徴によくあてはまるね
213:132人目の素数さん
14/10/18 13:41:39.39
>>209-210
面白いやつだね
>数学とは正しい命題の積み重ねで理論構築する学問
狭いね、視野が。21世紀の数学の最前線は、数学と数学の外の世界との境界を意欲的に探索しているように見える
特に、物理からの数学に対する刺激が大きいように思う
大きく見れば、19世紀からずっとかも知れないが
20世紀はじめに、抽象数学の流れができて、しばらくその道具立て整備でメシ食えた職業数学者がいた
だが、それも20世紀で一段落したような気がする
20世紀の抽象数学全盛期には、抽象数学の枠組みが出来れば、どんな問題も解けるという幻想があったかもしれない
20世紀後半から、”抽象数学の枠組みが出来れば、どんな問題も解ける”に反する予想外の数学的事実が頻出するようになった気がする
例えば、グリゴリー・ペレルマンのポアンカレ予想の解き方などその象徴かと。純粋数学者の発想を大きく超えた解き方
URLリンク(ja.wikipedia.org)
214:132人目の素数さん
14/10/18 13:58:38.84
>>210
論証への熱意ねー
新参者だろうね、きみは
昔、”Kummer”さんというコテハンの人が居た。熱心に数学の証明を展開していたんだ
いまでもスレの遺跡がある。下記だ。024まで続いたみたい
スレリンク(math板)
【Kummer's】代数的整数論024【Mathematical Note】
このスレにも来た
で、言ってやったんだ
「数学記号が使えない2ちゃんねるのスレで、数学理論を展開するのが無理じゃない?」と
実際、分数だって2行にわたる記法は無理だし、置換だって。普通の2行記法は無理(2行にわたる括弧が使えない)
で、スレ主としては、ここで数学理論を展開とか、数学の論証議論をする気はないんだよね
それをやりたいなら、海外の数学板 例えば、MathOverflowとか、Mathematics Stack Exchange いけば? あそこは数式展開可だよ
(まあ、そこまでのレベルじゃないんだろうね。だったら、大人しくしてろよ、レベルアップするまで!)
URLリンク(en.wikipedia.org)
URLリンク(math.stackexchange.com)
215:132人目の素数さん
14/10/18 14:02:37.51
>>214
スレ主です
補足
数式展開できないし、図も書けない
だから、適当なそういうサイトを探して、そこを参照してもらうようにしている
いまの仕組みからは、それしかないだろうよ
216:132人目の素数さん
14/10/18 14:16:13.97
>>211
スレ主です
つづき
下記は、Table 1,2 がなかなか良い。S4からS7までの部分群を調べている
URLリンク(www.ams.org)
The determination of Galois groups
Author: Richard P. Stauduhar
Journal: Math. Comp. 27 (1973), 981-996
URLリンク(www.ams.org)
URLリンク(www.ams.org)
217:132人目の素数さん
14/10/18 14:40:12.57
>>216
スレ主です
つづき
これは過去にも紹介したように思うが、ご参考まで
URLリンク(projecteuclid.org)
Bull. Amer. Math. Soc.
Volume 4, Number 7 (1898), 332-340.
Early history of Galois' theory of equations
James Pierpont
218:132人目の素数さん
14/10/18 16:13:47.24
>スレ主としてはスルーしても良いけど、ここはROMの初学者もいるだろうから、間違った意見をスルーしても誤解するとまずいと思って詳しく補足した
>2ちゃんねるをなんだと思っている? ここは天下のチラシの裏=スレ主のメモ帳だ
すげー自己矛盾w
219:132人目の素数さん
14/10/18 16:54:56.40
構ってちゃんなんだろう別にいいじゃないか
220:132人目の素数さん
14/10/18 17:22:57.73
>>209-210は2chが記法において数学に向いていないこととは別に>>1に論証能力があるのかということ
を言っていると思うが
setaさん(仮名)が2chから離れて数学の本を読もうとしても証明が読めないことには変わりないだろうし
> だったら、大人しくしてろよ、レベルアップするまで!
例えば数学や物理以前にごく基本的ことだけでも論理をマスターしている人は
スレリンク(math板:724-727番) とか
スレリンク(math板:181番)
を嬉々として書き込まないだろうに
飛ばし読みをするにしても簡単に見えてもマスターしていない基本的な事まで飛ばしたら意味がないから
とりあえずごく基本的な事柄を問題演習も含めてじっくりとやってレベルアップしたらどうですか
たいして時間はかからないと思うよ
221:132人目の素数さん
14/10/18 18:43:35.01
>>218-220
スレ主です
ご忠告ありがとうよ
まず、議論の基礎として、2ちゃんねる数学板とは何かからはじめよう
・2ちゃんねる:=天下の掲示板。実態は、玉石混交のさまざまな情報の集合だ
・数学板:=”2ちゃんねる”の制約(基本はアスキー文字に制限される。また、ブランクは縮小表示され、行列など数行にわたる表記をそろえるのは困難)
・数学板の実態は、雑談スレ。中学から高1くらいの簡単な数式の話は出来ても、大学クラスの数学の本格議論は無理(1レス=<2KB制約もある)
・それを求めるなら、英語の数学板があるよ>>214
・以上から、2ちゃんねる数学板に来る以上、それなりのつもりで来て貰わないと。学会じゃない。本格的な数学議論は無理だよ
で、スレ主が目指しているのは
・基本は、「ガロア原論文を読むためおよび関連する話題を楽しむスレ」>>1ってこと
・有益と思われるサイトの情報を集める
・同書籍情報を集める
・その上で、記法とバイト数に制約があるなかで、「ガロア原論文を読むため」の簡単な議論をしましょうと
なので、心がけていることは
・主張の裏付けをつける(URLを記す。書名と必要ならページを。情報のDate と出所をできるだけ明記する)
・こうすることで、スレ主のレベルを超えて、このページに来た人が、自分で原典をチェックすることができるってこと
222:132人目の素数さん
14/10/18 18:46:57.12
>>221
つづき
スレ主です
>・主張の裏付けをつける(URLを記す。書名と必要ならページを。情報のDate と出所をできるだけ明記する)
>・こうすることで、スレ主のレベルを超えて、このページに来た人が、自分で原典をチェックすることができるってこと
これによって、スレ主はあほでも、貼り付けられた情報は有用だということはありうる
基本的には、それがこのスレの価値だ
223:132人目の素数さん
14/10/18 18:53:57.54
>>222
つづき
スレ主です
>これによって、スレ主はあほでも、貼り付けられた情報は有用だということはありうる
>基本的には、それがこのスレの価値だ
では、スレ主にとって、このスレの意義はなにか
・一つは、動機付け。勉強の
・一つは、書くことで、理解が深まり記憶に残る
・一つは、メモ帳だ。自分が有益だと思った情報を書いておくと、記録に残るから
(自分が有益だと思った情報が、万人に有益とは限らない。しかし、何人かでも有益と思う人がいればそれで良し)
224:132人目の素数さん
14/10/18 18:57:48.45
>>223
つづき
スレ主です
・一つは、動機付け。勉強の
・一つは、書くことで、理解が深まり記憶に残る
・一つは、メモ帳だ。自分が有益だと思った情報を書いておくと、記録に残るから
(自分が有益だと思った情報が、万人に有益とは限らない。しかし、何人かでも有益と思う人がいればそれで良し)
この3つの要素は、このスレに来る人の多くにも当てはまるだろう
そして、このスレから多少でも、有益な情報や刺激を受けてもらえればそれで結構だ
繰り返すが、本格的な数学の議論や論証はここでは無理だ
225:132人目の素数さん
14/10/18 19:10:35.05
>>224
つづき
スレ主です
>>218-220 に戻る
そもそも、このガロアすれに何を求めてきているんだ?
まさか、スレ主に数学科大学院生なみの能力と知識を求めているなら筋違いだよ
論証能力があるかないかは、どうぞ勝手にご判断ください
そして、繰り返すが、そもそも、このガロアすれに何を求めてきているんだ?
無価値と思えば、ここに来る必要は無い
憩いと休息を求めるなら、他のスレがある
自分が価値あると考えるカキコをするか、ROMするか、去るか、選択肢は3つだ
なお、このスレは、スレ主の証明能力レベルアップを目指すために存在しているのではないよ(ああ勘違いだ)
スレ主があほだと思って去るもよし
スレ主を無視して、リンク先の有益な情報だけを拾うもよし
ここはそういうスレだよ
226:185
14/10/18 19:59:30.60
どうやら痛いところをついたようだ。
227:132人目の素数さん
14/10/18 20:17:21.70
>>200
つづき
スレ主です
>URLリンク(www.amazon.co.jp)
>ガロアの時代 ガロアの数学〈第2部〉数学篇 (シュプリンガー数学クラブ) 単行本 – 2002/8/1 彌永 昌吉 (著)
ここへ戻る
彌永本は、「ガロア原論文を読むため」の解説で結構良いね。現代数学の系譜11>1と倉田>>45を主に読んできたのだが
彌永本の良いところは、ガロア独特の置換記法について説明しているとこだ。
P264やP262やP258など。現在主流のコーシーによる上下2行に書き分ける方式に慣れていると、ここが分かり難い
ガロア独特の置換記法は、コーシーによる上下2行記法の上を省略して、下1行記法にしている
具体的に説明すると、例えば>>167
1列目 2列目 3列目 4列目
1 2 3 4 5, 1 3 5 2 4, 1 5 4 3 2, 1 4 2 5 3,
2 3 4 5 1, 3 5 2 4 1, 5 4 3 2 1, 4 2 5 3 1,
3 4 5 1 2, 5 2 4 1 3, 4 3 2 1 5, 2 5 3 1 4,
4 5 1 2 3, 2 4 1 3 5, 3 2 1 5 4, 5 3 1 4 2,
5 1 2 3 4, 4 1 3 5 2, 2 1 5 4 3, 3 1 4 2 5,
228:132人目の素数さん
14/10/18 20:23:38.30
>>227
つづき
スレ主です
この20の順列で考えると
コーシー流なら、全体では、最初の1 2 3 4 5,が、全ての頭についていると考えること
例えば
1列目
1 2 3 4 5,
1 2 3 4 5,
1 2 3 4 5,
2 3 4 5 1,
1 2 3 4 5,
3 4 5 1 2,
1 2 3 4 5,
4 5 1 2 3,
1 2 3 4 5,
5 1 2 3 4,
と考える。2列目、 3列目、 4列目 も同じ
229:132人目の素数さん
14/10/18 20:28:17.24
>>228
つづき
スレ主です
ガロア独特の置換記法で、コーシーによる上下2行記法の上を省略して、下1行記法にしていることの大きな利点がある
2列目に注目しよう
2列目
1 3 5 2 4,
3 5 2 4 1,
5 2 4 1 3,
2 4 1 3 5,
4 1 3 5 2,
順列が巡回していることは見やすいだろう
230:132人目の素数さん
14/10/18 20:32:17.14
>>229
つづき
スレ主です
>>228と同じように2行で書くと
2列目
1 3 5 2 4,
1 3 5 2 4,
1 3 5 2 4,
3 5 2 4 1,
1 3 5 2 4,
5 2 4 1 3,
1 3 5 2 4,
2 4 1 3 5,
1 3 5 2 4,
4 1 3 5 2,
こう書けば、最上位は単位元で、あと巡回置換になっていることは明白
231:132人目の素数さん
14/10/18 20:43:39.09
>>230
つづき
スレ主です。1列目と2列目に注目してみよう
1列目 2列目
1 2 3 4 5, 1 3 5 2 4,
2 3 4 5 1, 3 5 2 4 1,
3 4 5 1 2, 5 2 4 1 3,
4 5 1 2 3, 2 4 1 3 5,
5 1 2 3 4, 4 1 3 5 2,
1列目と2列目に移るのに
1 2 3 4 5,
1 3 5 2 4,
という置換(1→1, 2→3, 3→5, 4→2, 5→4)を、1列目に施せば、2列目が得られることは見やすい
232:132人目の素数さん
14/10/18 20:55:35.05
>>231
つづき
スレ主です。1列目と2列目に注目してみよう
1 2 3 4 5,
1 3 5 2 4,
という置換(1→1, 2→3, 3→5, 4→2, 5→4)を、σとしよう
1列目の巡回群をC5と書く
ここで、>>230のように、上の行1 3 5 2 4, を付けたと想像すると
2列目=σ-1・C5・σ=C5(巡回群) (σ-1・C5・σは、σによる変換)
に、自然と気付く
ここから、ガロアが正規部分群の概念に気付いても不思議ではない
σによる変換が見やすい。これが、ガロア記法の大きな利点と考える
(この説明が詳しいところが、彌永本の良いところ)
233:132人目の素数さん
14/10/18 21:03:48.74
図で書けば1→2→3→4→5→1の共役元がa→b→c→d→e→aの形になることはすぐわかるよ
234:132人目の素数さん
14/10/18 21:10:21.40
>>227
つづき
「ガロア原論文を読むため」の解説で、もう一つ重要なことは、ガロア分解式を用いてガロア群を導くこと
彌永本では、P263に
「(ガロア分解式)Vの満足するk係数の規約な方程式の根V(1),・・・,V(m)」を用いて、根の置換を導くといううまい方法によってガロア群を定めている」
と簡単に済ませている。
ここをじっくり解説しているのが、Tignol(下記)だ
URLリンク(www.amazon.co.jp)
代数方程式のガロアの理論 単行本 – 2005/3/1
Jean‐Pierre Tignol (著), 新妻 弘 (翻訳)
235:132人目の素数さん
14/10/18 21:19:57.48
>>232
補足
スレ主はわかって書いていると思うが、「σ-1・C5・σ=C5(巡回群)」の左辺のC5と右辺のC5とは、一般には同型ではあるが違う群である。
紛らわしいので注意。
236:132人目の素数さん
14/10/18 21:20:22.29
>>233
どうも
スレ主です。
共役元? こんな話かね?
URLリンク(www.tuhep.phys.tohoku.ac.jp)
群の構造 P17
2.2.2
共役元と共役類
conjugacy class
群の自然な自己同型写像が共役変換と呼ばれる変換によって与えられる.共役変換でつな
がる元を集めることで類を考えることができ,群の構造の一面を調べることができる.
URLリンク(www.tuhep.phys.tohoku.ac.jp)
現代物理学「基礎シリーズ」2 解析力学と相対論
(朝倉書店,二間瀬・綿村)に関する正誤表と書ききれなかった話題.
237:132人目の素数さん
14/10/18 21:35:09.32
>>235
どうも
スレ主です。
それは、群の表現(下記)の問題ではないかと。そして、何を同じとし、何を違うと考えるかは、コンテキスト(状況)依存だと
ある群にA、B二つの異なる表現があるとき、A、Bを同一視して良いか、別物と考えるか
URLリンク(d.hatena.ne.jp)
群論で,「有限群論・群の表現論」の講義ノートPDF 2014-07-11
238:132人目の素数さん
14/10/18 21:45:43.79
>>231
つづき
スレ主です。
Tignolのアマゾン書評、新妻 弘の訳が酷評されている・・
原書と併読要だと・・。東京理科大ですか。先生すまん、おれの書評じゃないので、許してくれ
URLリンク(m2server.ma.kagu.tus.ac.jp) 新妻研究室
罪滅ぼしに、下記2件アップする
URLリンク(blog.goo.ne.jp)
演習 群・環・体入門:新妻弘 - とね日記 - Gooブログ
blog.goo.ne.jp/ktonegaw/e/32bc51d4f5a1de1a095ec9c69bc371f7
2014/04/19 - 演習 群・環・体入門:新妻弘」 内容紹介
本書は、既刊の『群・環・体入門』の中にある問と節末の演習問題に解答を与えたものであり、数学を学ぶ初心者を対象としている。
まず、各節のはじめに定義と定理、そして問題の説明に必要と思われる ...
URLリンク(blog.goo.ne.jp)
群・環・体入門:新妻弘、木村哲三 - とね日記 - Gooブログ
blog.goo.ne.jp/ktonegaw/e/7f58114fe89f69d8e9a306fe819a6398
2010/03/31 - 群・環・体入門:新妻弘、木村哲三」 「群論への30講:志賀浩二著」もわかりやすかったが、こちらはもう少しレベルの高い良書である。
実際に大学の授業で使う教科書だと思う。特に環や体については具体例の豊富な「敷居の低い」入門書が ...
239:132人目の素数さん
14/10/18 22:57:41.26
>>238
つづき
スレ主です。
でTignolの14章 P243辺りからが、ガロア分解式を用いてガロア群を導くことの説明が、原論文の解説の形で書かれている
特に重要なことは、P245の結果5から
σ(f(r1,・・・ ,r n))=f(σ(r1),・・・ ,σ(r n))
になること
彌永本 P238(ガロア原論文)とP263(その解説)に戻る
ガロア原論文
(V) φV,φ1V,φ2V,・・・,φm-1V
(V') φV',φ1V',φ2V',・・・,φm-1V'
(V'') φV'',φ1V'',φ2V'',・・・,φm-1V''
これ、真面目に考えると分かり難い。
「(ガロア分解式)Vの満足するk係数の規約な方程式の根V(1),・・・,V(m)」を用いて、根の置換を導くといううまい方法によってガロア群を定めている」(彌永)
だが。”うまい方法”だが、分かり難い
それを分かりやすくするのが、Tignolの結果5 σ(f(r1,・・・ ,r n))=f(σ(r1),・・・ ,σ(r n))だ
240:132人目の素数さん
14/10/18 23:07:33.91
>>239
つづき
スレ主です。
(V) φV,φ1V,φ2V,・・・,φm-1V
(V') φV',φ1V',φ2V',・・・,φm-1V'
(V'') φV'',φ1V'',φ2V'',・・・,φm-1V''
φVは、Vの関数でφ(V)と書く方が分かりやすい。そして、上で左右を対比しているんだ
だから、分かりやすく書き直すと
(V) :φ(V),φ1(V),φ2(V),・・・,φm-1(V)
(V') :φ(V'),φ1(V'),φ2(V'),・・・,φm-1(V')
(V'') :φ(V''),φ1(V''),φ2(V''),・・・,φm-1(V'')
241:132人目の素数さん
14/10/18 23:16:39.17
>>240
つづき
スレ主です。
で
(V) :φ(V),φ1(V),φ2(V),・・・,φm-1(V)
(V') :φ(V'),φ1(V'),φ2(V'),・・・,φm-1(V')
(V'') :φ(V''),φ1(V''),φ2(V''),・・・,φm-1(V'')
φ(V),φ1(V),φ2(V),・・・,φm-1(V)は、解くべき方程式の根だった
そこで
φ(V),φ1(V),φ2(V),・・・,φm-1(V)を、r ,r1,・・・ ,r m-1などと書き直すと
(V) :r ,r1,・・・ ,r m-1
(V') :r' ,r1',・・・ ,r m-1'
(V'') :r'' ,r1'',・・・ ,r m-1''
などと書ける
r' ,r1',・・・ ,r m-1'やr'' ,r1'',・・・ ,r m-1''は、根r ,r1,・・・ ,r m-1の異なる順列と思ってくれ
で、言いたいことは、大体予測がつくと思うが
242:235
14/10/18 23:33:11.88
>>237
私は間違っていた。スレ主は分かっていなかった。
群Gの任意の部分群HとGの元σに対してσ-1・H・σはHと同型である。
HがGの正規部分群であるとはσ-1・H・σがGの部分集合としてもHと同じであるということである。
>>232のような書き方では単なる部分群と正規部分群の違いが無視されている。
243:132人目の素数さん
14/10/18 23:34:06.58
>>241
つづき
スレ主です。
(V) :r ,r1,・・・ ,r m-1
(V') :r' ,r1',・・・ ,r m-1'
(V'') :r'' ,r1'',・・・ ,r m-1''
ここで、置換σ:順列(r ,r1,・・・ ,r m-1)→順列(r' ,r1',・・・ ,r m-1')と定義する
(V) :r ,r1,・・・ ,r m-1 の左右に、置換σを施す
σ(V) :σ(r ,r1,・・・ ,r m-1 ) この右は定義より(r' ,r1',・・・ ,r m-1')となる
σ(V) は、当然Vで根の置換σを施したもの。(V') =(σ(V) )ということになる
これ自然な話だが、
(V) :φ(V),φ1(V),φ2(V),・・・,φm-1(V)
↓(書き直し)
(V) :r ,r1,・・・ ,r m-1
↓σ
(V') :r' ,r1',・・・ ,r m-1'
ということで、「要は左右で同じ置換σを施せば良い」と、簡単で分かりやすい話になる
244:132人目の素数さん
14/10/18 23:36:32.62
>>242
訂正
×HがGの正規部分群であるとはσ-1・H・σがGの部分集合としてもHと同じであるということである。
○Gの部分群HがGの正規部分群であるとは、任意のGの元σに対しσ-1・H・σがGの部分集合としてもHと同じであるということである。
245:132人目の素数さん
14/10/18 23:38:52.06
>>242
つづき
スレ主です。
補足ありがとう
うん、正規部分群の概念は、なかなか分かりづらいところだ
みなさん、良く考えてみてください
246:132人目の素数さん
14/10/18 23:45:11.23
>>244
つづき
スレ主です。
訂正ありがとう
で、そのときのHは何だ? >>231の1列目だ。それは、>>227の第一列目でもある。
そして、>>232の話は、3列目、 4列目 も同じ
ここまで言えば、お分かりだろう
247:132人目の素数さん
14/10/18 23:51:09.79
>>245
いや、スレ主がわかってない。
いま思うと、>>232の
>2列目=σ-1・C5・σ=C5(巡回群) (σ-1・C5・σは、σによる変換)
に、自然と気付く
ここから、ガロアが正規部分群の概念に気付いても不思議ではない
の論理展開がおかしい。
さっきも書いたように任意のH、σに対してσ-1・H・σはHと同型なので、
ここから正規部分群の概念に気づく方がおかしい。
248:132人目の素数さん
14/10/18 23:58:24.08
>>243
つづき
スレ主です。
Tignolの結果5 σ(f(r1,・・・ ,r n))=f(σ(r1),・・・ ,σ(r n))>>239
を認めると、
(V) :φ(V),φ1(V),φ2(V),・・・,φm-1(V)
(V') :φ(V'),φ1(V'),φ2(V'),・・・,φm-1(V')
(V'') :φ(V''),φ1(V''),φ2(V''),・・・,φm-1(V'')
は、結局
(V) :r ,r1,・・・ ,r m-1
(V') :r' ,r1',・・・ ,r m-1'
(V'') :r'' ,r1'',・・・ ,r m-1''
などと書ける
それは、結局、最初の(V) :r ,r1,・・・ ,r m-1の左右に
根の置換σ:(r ,r1,・・・ ,r m-1)→(r' ,r1',・・・ ,r m-1')
を施して得られる(有理式の計算 φ(V')はしなくても、結果が分かる)
249:132人目の素数さん
14/10/19 00:13:01.61
>>247
つづき
スレ主です。
じゃあ、なぜガロアはこんな回りくどいことを?
それは、ガロア原論文の命題II、命題IIIを証明するためだろう
命題IIは、補助方程式の根の添加でガロア群が分かれること
命題IIIは、補助方程式のすべての根の添加で、分かれたガロア群がみな同じ(つまりは、正規部分群まで縮小すること)
ガロアは、ここ以外では、Vを使わずに、直接根の順列(r ,r1,・・・ ,r m-1)やその置換を使って考えているのだった
Tignolの結果5 σ(f(r1,・・・ ,r n))=f(σ(r1),・・・ ,σ(r n))の証明は、かなり大変だ
ガロアはこのような証明を得ていたのだろうか?
250:132人目の素数さん
14/10/19 06:16:34.68
読みにくくてしゃあない
pdfかなんかつくってくれ
251:132人目の素数さん
14/10/19 07:30:46.48
>>250
どうも
スレ主です。
>読みにくくてしゃあない
>pdfかなんかつくってくれ
そう。
”・数学板:=”2ちゃんねる”の制約(基本はアスキー文字に制限される。また、ブランクは縮小表示され、行列など数行にわたる表記をそろえるのは困難)
・数学板の実態は、雑談スレ。中学から高1くらいの簡単な数式の話は出来ても、大学クラスの数学の本格議論は無理(1レス=<2KB制約もある) ”
ということ。本来、大学クラスの数学の本格議論は無理な場所なんだ
無理矢理、ガロア原論文の理論展開をしているから読みにくい
で、pdfを作る話は、スレ主の能力を超えるので無理だな
252:132人目の素数さん
14/10/19 07:41:55.11
>>247
どうも
スレ主です。
>さっきも書いたように任意のH、σに対してσ-1・H・σはHと同型なので、
それは、現代風の正規部分群の定義だ
しかし、ガロアの原論文では、別の書き方をしているのだった(下記)
URLリンク(galois.motion.ne.jp)
第13回:可解群の階段 ★ Gの夢 -- Mathematical Part
(抜粋)
200年前の手紙にも、説明が書いてある。こんな風に。
群Gが群Hを含むとき、群Gは
G = H + HS + HS' + ・・・
と、Hの順列に同じ置換を掛けて作られる組へと分解されるし、また
G = H + TH + T'H + ・・・
と、同じ置換にHの順列を掛けて作られる組へとも分解される。
この2通りの分解は、通常は、一致しない。一致するときが、固有分解と呼ばれるものだ。
(つづく)
253:132人目の素数さん
14/10/19 07:46:52.47
>>252
つづき
スレ主です。
>さっきも書いたように任意のH、σに対してσ-1・H・σはHと同型なので、
それは、現代風の正規部分群の定義だ
しかし、ガロアの原論文では、別の書き方をしているのだった(下記)
URLリンク(galois.motion.ne.jp)
第13回:可解群の階段 ★ Gの夢 -- Mathematical Part
(抜粋)
方程式の群が固有分解されない場合には、その方程式をどんなに変換しても、
変換された方程式の群は、いつでも同じ個数の順列を持つ事が、すぐに判る。
これに反して、方程式の群がN個の順列を持つM個の組へと固有分解される場合には、
与えられた方程式を二つの方程式によって解くことができる:
方程式の群が、M個の順列を持つものと、N個の順列を持つものとで。
A「さあ、このくだりが、現代風に言えば
“2.正規部分群を取り出したときにできる商群が、”ってところに相当する。
方程式を解くということは、もとの方程式が持っていた個数の順列を、
MxNのように、2つの順列に“固有分解”するっていうことなんだ。」
254:132人目の素数さん
14/10/19 07:54:41.29
>>252
つづき
スレ主です。
引用元紹介:Gの夢 ~ 解けない方程式の謎を解く2011/02/16
URLリンク(galois.motion.ne.jp)
--- C O N T E N T S ---
はじめに
第01回 解ける、解けない
第02回 複素数の形
第03回 かけると回る複素数
第04回 三次方程式
第05回 四次方程式・対称性
第06回 補助方程式とリゾルベント
第07回 四次方程式のリゾルベント
第08回 数体に目を向ける
第09回 代数体
第10回 体の同型
第11回 群の登場
第12回 Gの最後の授業
第13回 可解群の階段
体感コーナー
あとがき
参考文献
掲示板 -- ご意見・ご感想、何でもお気軽にどうぞ
255:132人目の素数さん
14/10/19 07:59:38.19
>>253
違う、違う。
Hが正規部分群でなくても、σ-1・H・σはHと同型である。
念のため書いとくとHからσ-1・H・σへの同型写像はh→σ-1・h・σで与えられる。
256:132人目の素数さん
14/10/19 08:23:37.01
>>253
つづき
スレ主です。
第一論文では、別の表現を使っている。彌永本では、P241にある。ネット検索すると下記
URLリンク(docs.google.com)
ガロアがオーギュスト・シュヴァリエへ送った手紙(数III方式ガロアの理論: 矢ヶ部 巌 著 の裏表紙にある) - 1
第一の論文 命題II, III
・方程式に補助方程式の根を一つ添加する場合:第一の場合
方程式の群は同じ置換によって互いに移り合う組へと分解される
・方程式に補助方程式の根を全部を添加する場合:第二の場合
これらの組が同じ置換を持つ条件: 第二の場合にだけ成立
257:132人目の素数さん
14/10/19 08:30:12.14
>>247
つづき
スレ主です。
ここへ戻る
そうガロアが気付いたのは、下記。現代風の正規部分群の定義形式とは違うかも知れない。が、数学的には同じだ
(手紙)>>252
群Gが群Hを含むとき、群Gは
G = H + HS + HS' + ・・・
と、Hの順列に同じ置換を掛けて作られる組へと分解されるし、また
G = H + TH + T'H + ・・・
と、同じ置換にHの順列を掛けて作られる組へとも分解される。
この2通りの分解は、通常は、一致しない。一致するときが、固有分解と呼ばれるものだ。
(第一の論文 命題II, III )>>256
・方程式に補助方程式の根を全部を添加する場合:第二の場合
これらの組が同じ置換を持つ条件: 第二の場合にだけ成立
258:132人目の素数さん
14/10/19 08:48:17.81
>>257
と、正規部分群の定義がわかってない人間が申しております。
259:132人目の素数さん
14/10/19 09:35:59.87
>>258
どうも
スレ主です。
>>255と同一人物と見たので、コメントしておく(ここではIDが出ないので不便だ)
>Hが正規部分群でなくても、σ-1・H・σはHと同型である。
>念のため書いとくとHからσ-1・H・σへの同型写像はh→σ-1・h・σで与えられる。
ここ、なんか勘違いしてないか? σには、何の制約も付かないのか?
大本の群をG、H⊂G, σ∈G として
σには、何の制約も付かないとしたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
自分で気付くまで放置しようと思ったが、うるさいので一言
260:132人目の素数さん
14/10/19 09:56:30.34
>>259
群Gの異なる部分群HとKが同型になることはあり得る。
というか、HがGの正規部分群でなければ必ずそのようなHとKの組は存在する。
例えば、S5の、1→2→3→4→5→1という置換から生成される部分群と、1→3→2→4→5→1という置換から生成される部分群は、
同型ではあるが(どちらも5次巡回群)、S5の部分群としては異なる。
261:132人目の素数さん
14/10/19 10:35:05.51
>>147-148
どうも
スレ主です。
遠隔レスだが、ここに戻る
>二、歴史的に関係が深いが、根源とは思わない
掘り下げると、いろんな見解があるだろう。が、まあ教師が群を教えるとき「ガロアが・・」みたいな話をするだろう
話として面白からね。で、「ガロアが・・」という刷り込みが入る。そうすると、「ガロア理論」というキーワードに反応する人多数となる
>三、数学系科以外でガロア理論など聞いたこと無い
いやいや、通俗本が山ほどあるでしょ。大学の外で。ガロア誕生200年で盛り上がった年もある
ガロアは、日本では著名人であり、「ガロア理論」の内容は知らなくても、言葉は聞いたり見たりの人は多いだろう
262:260
14/10/19 10:39:32.46
>>261
さすがに自分がおかしいことに気づいたようだ。
263:132人目の素数さん
14/10/19 10:44:12.90
教師が教えるとき「ガロアが…」
そんな教え方しねぇーよモグリ。
「Galois」はアイドルじゃ無いんだ。
いまやGaloisは理論や定理を識別する単なる記号に過ぎない。
264:132人目の素数さん
14/10/19 10:46:47.52
>>261
つづき
スレ主です。
>四、知ってて損が無いのはいいとして、役に立つ可能性が大きいとは思わない
「ガロア理論」をどう捉えるかは、その人の感性だけど、例えば梅村先生は下記。
おこがましいが、梅村先生を私なりに理解すれば、問題を解くべき対象Fがあって、対象Fが群の構造を持っていることを見抜く。そして群論を適用する。
これが、「ガロア理論」のきもだろう。そう広く捉えたとき、「ガロア理論」がモデルになっている例は多いと思うのだが
その原型が、ガロア原論文
URLリンク(www.sci.nagoya-u.ac.jp)
眠りから覚めた微分ガロア理論 梅村 浩 多元数理科学専攻教授 名古屋大学理学部・理学研究科 広報誌 No.10 p14_15
彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。
(2)ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。
方程式の場合、目のつけどころであるカナメの部分がガロア群である。
ヒヨコのお尻と違って、方程式の対称性であるガロア群は隠れているので、発見するのが難しいのである。
ガロア理論は上に述べた歴史的難問の解決に役立っただけではない。19世紀以降の数論、代数幾何学の発展はガロア理論なくして考えられない。たとえば300年を越える眠りから覚めたフェルマの最終定理の証明もそうである。
(引用おわり)
265:132人目の素数さん
14/10/19 10:50:18.48
>σには、何の制約も付かないとしたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
これは酷い
266:132人目の素数さん
14/10/19 10:52:34.06
>>264
つづき
スレ主です。
> 役に立つかどうかじゃなく、知りたい・理解したいのが勉強の動機だな、俺の場合
それは、大切にしたい動機だね
267:132人目の素数さん
14/10/19 10:53:08.43
性器部分群の定義を読んでちゃんと理解しよう
268:132人目の素数さん
14/10/19 10:57:01.59
フェルマの最終定理が「眠りから覚めた」とは?
意味不明
269:132人目の素数さん
14/10/19 11:12:12.88
>>265
どうも
スレ主です。
>>σには、何の制約も付かないとしたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
何の制約も付かないを、∀σという意味で使っている>>259
だから、大本の群をG、H⊂G, ∀σ∈G として
σには、何の制約も付かない(∀σ∈G)としたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
URLリンク(ja.wikipedia.org)
正規部分群(せいきぶぶんぐん、英: normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。
正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。
270:132人目の素数さん
14/10/19 11:19:02.29
文系脳の数ヲタかw
この程度の概念の理解に大量の労力を費やした結果がこれ。
「日暮れて道遠し」
271:132人目の素数さん
14/10/19 11:19:15.04
>>269
>>260を読んだかい?
wikipediaの引用も結構だが、その文脈における「不変」の意味を分かっているかい?
272:132人目の素数さん
14/10/19 11:23:21.38
どうして
>正規部分群(せいきぶぶんぐん、英: normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。
から
>σには、何の制約も付かない(∀σ∈G)としたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
になっちゃうのか凡人には理解不能だから、誰かエスパー呼んできて
273:132人目の素数さん
14/10/19 11:23:44.33
>>268
どうも
スレ主です。
>フェルマの最終定理が「眠りから覚めた」とは?意味不明
まあ、下記でしょう。梅村 浩先生は既知として話をしていると思う
URLリンク(ja.wikipedia.org)
長らく証明も反例もなされなかったことからフェルマー予想とも称されたが、
360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。
最終的解決
証明の過程では、まずはコリヴァギン=フラッハ法を用いたが、
それでは不十分だと判明したので、以前に採用してから放棄していた岩澤理論を併用することで、最終的な証明が完成した。
URLリンク(ja.wikipedia.org)
岩澤理論(Iwasawa theory)は、岩澤健吉が円分体の理論の一部として創始した、
(無限次元拡大の)ガロア群の、イデアル類群における表現論である。
274:132人目の素数さん
14/10/19 11:24:32.65
同値類とか商集合も分かってなさそう
慌ててグーグルでキーワード検索
妄想が捗ってまた草生える
275:132人目の素数さん
14/10/19 11:26:12.90
典型的な啓蒙書ヲタ脳だな
大雑把にわかった気になって、細かいとこが実は全くわかってない
276:132人目の素数さん
14/10/19 11:28:40.90
原論文に拘ってるそうだから、現代数学用語と原論文の用語概念定義の違いが理解に大混乱引き起こしていると予想w
コンパクトというとブルバキはハウスドルフ性まで仮定するのに他所はとか
277:132人目の素数さん
14/10/19 11:31:52.57
スレ主は近年の数板アイドル
貴重な人材だ
kingみたいに虐め殺すなよおまいら
死なない程度に可愛がってやってくれ
278:132人目の素数さん
14/10/19 11:36:22.05
>>276
そんなレベルではない。
彼の頭の中の定義だとすべての部分群は正規部分群になってしまう。
279:132人目の素数さん
14/10/19 11:44:46.76
単純群…
280:132人目の素数さん
14/10/19 11:46:12.87
エスパーすると、多分「同型」を「同じもの」と脳内変換しちゃってるんだろう
定義を確認すべきは「同型」の方かもね
281:132人目の素数さん
14/10/19 11:49:19.42
同型を除いて一意とかの定型句も知らなそう
282:132人目の素数さん
14/10/19 11:55:25.36
>>280
そんな基本も分からんのが研究擬き?
283:132人目の素数さん
14/10/19 11:55:59.33
>>269-272
どうも
スレ主です。
なんか、勘違いしてない?
1.「Hが正規部分群でなくても、σ-1・H・σはHと同型である。」>>255 という陳述が、成り立つ条件を教えてくれ
(無条件で成り立つ場合が、正規部分群だと思うが)
2.ああ、辿ると>>247か
”さっきも書いたように任意のH、σに対してσ-1・H・σはHと同型なので、
ここから正規部分群の概念に気づく方がおかしい。 ”?
これ>>244 "○Gの部分群HがGの正規部分群であるとは、任意のGの元σに対しσ-1・H・σがGの部分集合としてもHと同じであるということである。"
からの継続だったので、Hは正規部分群という前提で考えていた。違うのか?
あと、正規部分群は大本の群Gとの関係があることも注意しておく
>>260"群Gの異なる部分群HとKが同型になることはあり得る。
というか、HがGの正規部分群でなければ必ずそのようなHとKの組は存在する。
例えば、S5の、1→2→3→4→5→1という置換から生成される部分群と、1→3→2→4→5→1という置換から生成される部分群は、
同型ではあるが(どちらも5次巡回群)、S5の部分群としては異なる。"で
言いたいことが不明だが、群GがS5のとき、位数5の巡回群は正規部分群ではない
が、>>166-167の線形置換から成る位数20の群Gでは、正規部分群になるよ
284:132人目の素数さん
14/10/19 11:58:15.71
>>283
どうも
スレ主です。
これだけ言って分からないようなら、以降無視(スルー)だな
285:132人目の素数さん
14/10/19 11:58:32.81
スレ主の草の生やしすぎで直ぐにスレの容量限界に到達と理解
286:132人目の素数さん
14/10/19 11:59:30.26
スレ主何人居るんだ?w
287:132人目の素数さん
14/10/19 12:04:58.78
倉田とかが出してる骨董愛好家向けのガロア本では間に合わんのかな
自分は懐古趣味に興味ないから読んでないけど
288:132人目の素数さん
14/10/19 12:05:38.03
フェルマの予想が眠りから覚めたという言い方は
モーデルとかファルティングスとか
(あるいは宮岡先生とか)に対して
大変失礼に当たるのではないの?
そういう意味で「意味不明」と言ったつもり
289:132人目の素数さん
14/10/19 12:12:34.72
プロの研究者は基本知識はさっさと詰め込んで最速で最前線へ行こうとするから。
マッタリと骨董を愛でる1>>はまさに銃後の研究者だなw
290:132人目の素数さん
14/10/19 12:13:05.05
個人的には
ラグランジュの定理を知った時点で
半分以上わかった気になった
291:132人目の素数さん
14/10/19 12:22:13.92
>>283
>1.「Hが正規部分群でなくても、σ-1・H・σはHと同型である。」>>255 という陳述が、成り立つ条件を教えてくれ
無条件で成り立つ。
しかたないから証明してあげるので、以下の証明を1行1行丁寧に読んでみて、
わからないところがあったら何行目がわからないと指摘してごらん。
他の文献にこう書いてあるとかはどうでもいいから、下の証明だけを読んで、ね。
(証明)
準同型φ:H→σ^(-1)・H・σをφ(h)=σ^(-1)・h・σで定める。
念のためこれが準同型であることを示しておく。
φ(g・h)=σ^(-1)・g・h・σ=σ^(-1)・g・σ・σ^(-1)・h・σ=φ(g)・φ(h)
なので、確かに準同型である。
次に、これが同型写像であることを示す。
ψ:σ^(-1)・H・σ→Hをψ(g)=σ・g・σ^(-1)で定める。
このとき、
ψ(φ(h))=σ・σ^(-1)・h・σ・σ^(-1)=h
φ(ψ(g))=σ^(-1)・σ・g・σ^(-1)・σ=g
なので、ψはφの逆写像である。
したがって、φは同型写像なので、Hとσ^(-1)・H・σは同型である。
292:132人目の素数さん
14/10/19 12:27:44.71
>>291
この流れで、そういうレスしても仕方ないと思うんだが…
293:132人目の素数さん
14/10/19 12:32:01.93
>>283
共役部分群の定義を調べて理解せよ。
自力で分からないなら、君がガロア理論を弄っても無意味。
294:132人目の素数さん
14/10/19 12:36:46.66
代数が専門外で共役部分群を忘れていた自分も大概だなと思ったw
295:132人目の素数さん
14/10/19 12:38:47.66
「なんかイヤな図書館」
人が多いのに静かすぎて
自分が座敷童になったような気になる
296:132人目の素数さん
14/10/19 12:39:39.89
↓こういうレスをつけてる時点で、スレ主の「肥大化した自我ww」ってのが
透けてみえるんで、数学の話しても仕方ないと思う
245 :132人目の素数さん:2014/10/18(土) 23:38:52.06
>>242
つづき
スレ主です。
補足ありがとう
うん、正規部分群の概念は、なかなか分かりづらいところだ
みなさん、良く考えてみてください
297:132人目の素数さん
14/10/19 12:41:44.49
>>296
「おいおい考えるのはおまえだろ!」
って突っ込みか。
上から目線して見たくて仕方がないんだろうな。
298:132人目の素数さん
14/10/19 12:45:53.38
ここまで叩かれても、スレ主は「俺は悪くない、このスレを立てたのは俺だ、
文句あるヤツは出て行け」くらいにしか思ってないだろ
無知は強いよなw
299:132人目の素数さん
14/10/19 12:48:32.30
スレ主は、数学の話に入ることは避けて、以前のようにひたすら
いろんな解説のコピペとリンク貼りだけしておけばいいと思うよw
数学科なら3年前期で必ず習う正規部分群もわかってないなら
ガロア理論なんて理解できるわけねーからw
300:132人目の素数さん
14/10/19 12:48:57.01
ソクラテス曰く
無知こそ最大の悪徳である
301:132人目の素数さん
14/10/19 12:52:26.52
いや。
かなり進展したな。
真面目にレス読んだ人が>>1が何に引っかかってるか明らかにしたじゃないかw
302:132人目の素数さん
14/10/19 12:55:43.61
無知を自覚してるならね、>>245みたいなレスをするのが最悪
数学板でも
無知を晒す→周りが突っ込む→なら教えろ→教えてもわからない
→俺に分かるように教えられないお前らもわかってないだろ→周りぽかーん
→本人、勝利宣言ww
はよくある流れ
303:132人目の素数さん
14/10/19 12:56:49.80
>>302
既視感がwwwwww
304:132人目の素数さん
14/10/19 12:57:26.36
>>301
そうだな
スレ主がどこで躓いているか、>>1以外の全員は理解できたと思うw
305:132人目の素数さん
14/10/19 13:06:22.53
>>300
誤解の方が無知より悪
無知は知ればいいだけ、誤解は手が付けられない
306:132人目の素数さん
14/10/19 13:06:57.71
>>45
どうも
スレ主です。
ここに戻る。
URLリンク(www.amazon.co.jp)
Galois Theory (Graduate Texts in Mathematics) (英語) ハードカバー – 1997/12/1 Harold M. Edwards (著)
序文で
"・・ I saw that the modern treatment of the Galois theory lacked much of simplicity and clearity of the original. "
と書いている。
ガロア原論文(例えば、彌永本)を読むとき
現代の主流のガロア理論とは、大きく異なる手法がある
一つは、ガロア分解式
二つ目は、ガロア分解式から問題の方程式の根の有理式を導き、そこから方程式の群を定義すること
三つ目は、置換をガロア記法で、1行で表すこと
ガロア分解式については、>>204あたりに書いた
方程式の群を定義については、>>234あたりに書いた
ガロア記法については、>>232あたりに書いた
ここらの独特の内容は、分かればEdwardsのいう”simplicity and clearity of the original”に繋がると思う
では
307:132人目の素数さん
14/10/19 13:15:05.06
そうそう、その調子。
数学の話なんて、アホのスレ主はできないのだから、
カタログだけ並べるのがこのスレに合ってる
308:132人目の素数さん
14/10/19 13:22:55.75
昔、梅村先生が講義で某オーストラリアの大学の学生の論文を参考文献に挙げてたの思い出すな。
お話は
・微分ガロア理論の定理、命題が非常に良くまとまっていて要約参照に便利。
・しかし、付いてる証明は絶対に信用してはいけない。
・梅村氏の証明を「改良」する趣旨の論文。
・著者は、関数fの定積分が0だから、f>=0とかの仮定無しにfは恒等的に0とか結論するようなレベルの学生。
・Dr.コースの学生らしいw
309:132人目の素数さん
14/10/19 13:25:07.40
>>291
どうも
スレ主です。
証明ありがとう。よく分かったよ。
スレ主が勘違いしていた。正規部分群がまだ十分理解できていないってことだね
310:132人目の素数さん
14/10/19 13:28:31.55
>>308
カタログとして機能か
311:132人目の素数さん
14/10/19 13:31:41.81
>>309
そんなことも分からずに今迄君は何を理解してたの?
312:132人目の素数さん
14/10/19 13:33:20.58
>>307
どうも
スレ主です。
>カタログだけ並べるのがこのスレに合ってる
もとからそのつもりなんだがね。基本は
>>288
>フェルマの予想が眠りから覚めたという言い方は
>モーデルとかファルティングスとか
>(あるいは宮岡先生とか)に対して
>大変失礼に当たるのではないの?
まあ、そういう見方も
そうあげ出すと、クンマーさんから始まって、連綿と出てくる気もする
313:132人目の素数さん
14/10/19 13:43:00.55
向上したかったら>>1はもっと謙虚になれ
314:132人目の素数さん
14/10/19 13:52:39.70
アホを晒しても、相変わらず上から目線だなw ぶれないww
向上する気はないんだろうな
「いろんなカタログ持ってる俺すげー」したいだけだろうから
315:132人目の素数さん
14/10/19 13:56:53.83
数学怖いお
マトモに議論すると直ぐに無知がバレる
でも上から目線で接してると思い込みで数学出来る学生馬鹿認定することあるから要注意
年長が物知りなのは当たり前だから
316:132人目の素数さん
14/10/19 13:57:27.29
群論の入門で躓いてるのにガロア理論を大いに語るとは恐れ入った
317:132人目の素数さん
14/10/19 13:59:19.25
英文にアレルギー無いだけが取り柄
318:132人目の素数さん
14/10/19 14:05:34.76
>年長が物知りなのは当たり前だから
ダウトw 年取っても何も知らないヤツはいくらでもいる
ネットにはりついて検索だけして、実は中身は何も分かってない「物知り()」に
なるのは、今の時代はとっても簡単だ
319:132人目の素数さん
14/10/19 14:08:21.76
>>318
この時代検索結果を速攻理解出来るのならそれで良いのかも。
そう言う無知なのに限って理解も遅いのが現実なんだろうが。
320:132人目の素数さん
14/10/19 14:10:12.16
>>198が良いこと言ってる
>お前自身が誤解して間違った意見書いてんだろw 初学者の心配する前にお前の心配しろw
321:132人目の素数さん
14/10/19 14:11:42.58
>>1は万年初学者
322:132人目の素数さん
14/10/19 14:14:17.41
>>319
やっぱり、普通の数学科でやってるように、手を動かして演習問題を
解いてみる、テキスト読んで「自明」「証明は読者に」と書いてる
部分を自分で埋めるw、といった地道な勉強が必要。
ネット検索してwikipediaとかをながめたり、オンライン講義ビデオを
見てるだけでは、数学は身につかないよ
スレ主が群論の初歩も知らないで、ガロア理論スレを立てて
ドヤ顔していたのがわかったのは、今日の大きな収穫だったなw
323:132人目の素数さん
14/10/19 14:24:55.47
↓は痛いなあ。スレ主って、何歳くらいなんだろうww
197 :132人目の素数さん:2014/10/18(土) 09:37:38.03
>>195-196
スレ主です
同一人物だと思うけど、数学科2年くらいかね?
視野狭い。まだ、行列とか線形空間とか、未消化。自分が、大学で教えられた世界がすべてだと。
まあ、卒業のころに、戻ってきな。
324:132人目の素数さん
14/10/19 14:30:18.26
どんな態度で数学に臨んだら駄目かを教えてくれる良スレ
325:132人目の素数さん
14/10/19 14:32:48.93
データも揃ったし、>>1の人物像のプロファイリングに入って良い頃合い
326:132人目の素数さん
14/10/19 14:38:54.79
>スレ主が勘違いしていた。正規部分群がまだ十分理解できていないってことだね
勘違いじゃなくて、根本的にわかってないということが、スレ主はわかってないなw
327:132人目の素数さん
14/10/19 14:52:01.62
>>323
高齢者臭いな
328:132人目の素数さん
14/10/19 14:58:29.28
内外の啓蒙書をメインテキストに選んだ時点で>>1は間違っている。
歴史的研究は、1冊でも良いからちゃんとした教科書を腰を据えて読んでマスターしてからな。
329:132人目の素数さん
14/10/19 15:03:30.97
うわあああああ
>>208
>君のレベルなら、こんなところを徘徊せず、図書館で勉強するんだな。スマホの電源落としてね! 君のレベルなら落第の心配があるだろう
330:132人目の素数さん
14/10/19 15:33:52.45
>君のレベルなら、こんなところを徘徊せず、
↑ここまでは正しいな、落第どころか大学にも入れそうもないスレ主だがww
331:132人目の素数さん
14/10/19 16:04:38.39
>>1がフルボッコでわろた
きょうはなんか本気モードで叩いてるのがいるがどうした?
332:132人目の素数さん
14/10/19 16:25:26.17
ほどよく、スレ主が燃料投下してるところも香ばしい
333:132人目の素数さん
14/10/19 17:31:29.77
>>212
特徴
良心が異常に欠如している 他者に冷淡で共感しない 慢性的に平然と嘘をつく 行動に対する責任が全く取れない
罪悪感が皆無 自尊心過大で自己中心的 口が達者で表面は魅力的
エミール・クレペリンによるとサイコパスのひとつに「空想虚言者」という類型がある。
【想像力が異常に旺盛で、空想を現実よりも優先する】
一見才能があり博学で、地理・歴史・技術・医学など、何くれとなく通じていて話題が豊富であるが、よく調べるとその知識は他人の話からの寄せ集めである。
【弁舌が淀みなく、当意即妙の応答がうまい】
好んで難解な外来語や人を驚かす言説をなす。
【人の心を操り、人気を集め、注目を浴びることに長けている】
自己中心の空想に陶酔して、他人の批判を許さない。
自ら嘘をついて、いつのまにかその嘘を自分でも信じ込んでしまうのである。
「空想虚言者」というのがあるのね。確かにあてはまっていておもしろいね。
>>220で
> ごく基本的な事柄を問題演習も含めてじっくりとやってレベルアップしたらどうですか
というのが、
>>225で
> スレ主に数学科大学院生なみの能力と知識を求めているなら筋違いだよ
になっているのが素晴らしい!!。
334:132人目の素数さん
14/10/19 17:36:46.14
要するに「ぼくちゃんが理解する範囲で話をしたいです」という
数学板によくいる、アマチュアの甘ちゃんですな
自分が分からない数学が出てきたら「ここは俺のスレだ、お前は出て行け」
自分より分かってなさそうなヤツを見たら「良く考えてみてください」
335:132人目の素数さん
14/10/19 17:38:33.30
>>331
どんなにフルボッコされてても、平気で上から目線でレスしてくるんだから
また叩かれるだけだよw
スレ主が叩きがいのあるアホだとわかったのが土日の収穫wwww
336:132人目の素数さん
14/10/19 18:51:33.49
みんな、ここのスレ主みたいな大人になっちゃいけないよ!
337:235
14/10/19 18:52:50.14
>>235をみればわかると思うが、私はスレ主を馬鹿にしたり叩いたりする気はなかった。
スレ主が頓珍漢なことを言い出しても割りと真面目に対応したつもりである。
338:132人目の素数さん
14/10/19 19:16:45.43
>>337
あなたは誠実だった(そういうレスがずっと続いていることもわかっている)が
もう、そういう状態ではなくなってることも理解してください
スレ主が数学の中身の話を一切やめればすむことです
339:132人目の素数さん
14/10/19 21:26:06.55
スレ主
______
/ \ /\
/ し (>) (<)\
| ∪ (__人__) J | ________
\ u `⌒´ / | | |
ノ \ | | |
____
/ \ ─\ チラッ
/ し (>) (●)\
| ∪ (__人__) J | ________
\ u `⌒´ / | | |
ノ \ | | |
____
/::::::─三三─\
/:::::::: ( ○)三(○)\
|::::::::::::::::::::(__人__):::: | ________
\::::::::: |r┬-| / | | |
ノ:::::::::::: `ー'´ \ | | |
340:132人目の素数さん
14/10/20 08:55:31.38
昔ながらの名無し吊り
341:132人目の素数さん
14/10/20 21:38:13.21
過去レスをいくつかながめてみたが、スレ主は最初からずっと上から目線だな
よくも、その11までボロが出なかったというか、気がついてた人は
このスレからさっと離れただけなのか、よくわからん。
詐欺師の才能はあるかもねw>スレ主
まあ正規部分群ごときで調子ぶっこいて、無知を晒し出しちゃったねえ。
本性がばれてしまったら、理解不足の初心者どころか
偉そうにしたいだけの痛いヤツだった。人間性に問題ありすぎ
342:132人目の素数さん
14/10/20 21:47:55.53
同型写像と恒等写像を混同してる奴はスレ主に限らず、結構いるんじゃないか?
話がズレるけど、確率論で独立事象と排反事象を混同する間違いはよくある。
343:132人目の素数さん
14/10/20 22:22:21.61
>同型写像と恒等写像を混同してる奴はスレ主に限らず、結構いるんじゃないか?
おいw
344:132人目の素数さん
14/10/20 22:50:24.47
まあ、一生ぐるぐる入門をやってる人は、数学だけでなく、
語学でもプログラムでもどこの世界にもいるからw
そんな一生ぐるぐる入門者が、数学科の大学生をバカにしてたのが
このスレってだけでさwww
345:132人目の素数さん
14/10/20 23:02:51.16
>>343
で、圏同値とか持ち出して、「混同したって問題ない」とか強弁するんだぜ、きっと。
346:132人目の素数さん
14/10/20 23:19:29.65
ん、同型は群としては「同じもの」ということだから恒等写像と区別しなくても
良いと思うが
どんな文脈の話?
347:132人目の素数さん
14/10/20 23:41:26.24
┐( ̄ヘ ̄)┌ ヤレヤレ・・・
348:342
14/10/20 23:57:00.83
>>342
おれも不正確だった。
Hが正規部分群であるためには
内部自己同型写像(のHへの制限)が恒等写像である必要はないな。
349:132人目の素数さん
14/10/21 00:05:06.13
>同型写像と恒等写像を混同してる奴
正直それは絶望的かと
ていうかそもそもここ、ガロア理論のスレだよなw
350:132人目の素数さん
14/10/21 00:16:11.06
同型写像=恒等写像にしちゃうと、任意のガロア群=単位群でガロア理論崩壊w
まあ上記は体の同型だから群の同型とは違うっちゃ違うけど、気付きそうなもんだけどなあ
351:132人目の素数さん
14/10/21 00:24:38.59
つまり、スレ主がガロア理論を理解するのは絶望的とw
352:132人目の素数さん
14/10/21 04:20:49.64
運営乙
353:132人目の素数さん
14/10/21 15:50:57.12
スレ主ではないが、
正規部分群もわからずにガロア理論を語ってなにが悪い
2ちゃんねるを何だと思っているチラシの裏だぞ
それにここはおれのスレなんだからおれが何を書いたっていいんだよ
こんなところか
354:132人目の素数さん
14/10/21 15:57:33.44
もうちょっと突っ込んだ方がいいなあ
正規部分群もわからずにガロア理論を語ってなにが悪い
正規部分群の概念は、なかなか分かりづらいところだ
みなさん、良く考えてみてください
それにガロアの原論文では、別の書き方をしているのだ
お前ら視野狭い。まだ、行列とか線形空間とか、未消化。自分が、大学で教えられた世界がすべてだと。
まあ、卒業のころに、戻ってきな
2ちゃんねるを何だと思っているチラシの裏だぞ
それにここはおれのスレなんだからおれが何を書いたっていいんだよ
355:132人目の素数さん
14/10/21 17:31:05.72
語録
>>12-15
>群にしろ、ガロア理論にしろ、正規部分群にしろ
>こういう深い概念は、いろんな切り口で理解すべきだ
>深く理解しておくと、この場面では、この性質を使うべしというのが分かる
>>23
>一方で21世紀の世界では、旧帝大の本当のトップ数割は別として、数学ソフトやプログラミング できれば、それは武器だと思うんだよね
>>251
>pdfを作る話は、スレ主の能力を超えるので無理だな
過去のスレの書き込みだと
筋が通らないことは嫌い
自分の頭の中にある書きたい内容とwikipediaの内容は大体同じなのでwikipediaのコピペをする
というのがあったかな
356:132人目の素数さん
14/10/21 20:36:01.59
スレ主大人気だな
357:132人目の素数さん
14/10/21 20:42:41.83
久しぶりに様子みにきたらレベルが数段あがったかんじ。
代数演算以外の演算を加味した演算での可解性についての理論ってあるの?
358:132人目の素数さん
14/10/21 20:46:21.07
>代数演算以外の演算を加味した演算での可解性についての理論ってあるの?
意味がよく分からんが、超幾何函数や楕円函数を使えば、次数に関係なく
全ての代数方程式の「解の公式」が分かっている
359:132人目の素数さん
14/10/21 20:48:04.52
>>356
正規部分群もわからないで語ってることがばれちゃって、その視点で
スレ主の過去レスをさかのぼって読むと、ほんと笑えるからなあwww
360:132人目の素数さん
14/10/21 20:50:34.08
>>358
解の公式あるから可解証明するまでもないってことで無いのかな?
それ以外の演算を加味した場合について、可解になるかどうかを評価できる理論ってある?
361:132人目の素数さん
14/10/21 20:51:48.67
たとえば「こういう性質の演算を追加したら可解になりますよ」みたいな評価ができる理論があるのかどうか知りたいんだけど。
362:132人目の素数さん
14/10/21 20:58:33.26
スレ主はガロア理論を、分かってるフリをしていたのか、分かったツモリになっていたのか?
363:132人目の素数さん
14/10/21 21:00:15.52
何が聞きたいかわからん。
根号使って解けるかどうかなら、ガロア群が可解かどうかで判定できる。
超幾何函数や楕円函数使えば、解を全部具体的に構成できる。
その中間の理論って、例えばヒルベルトの第13問題(7次方程式は
二変数函数で解けるか?)みたいな話なら、二変数函数が連続なら解けるが
解析的なら未解決だな(解析的なら解けないだろうと信じられている)。
アーノルドによる第13問題の解決は、もうガロア理論とは別の話になってる。
「こういう性質の演算」という例がなきゃ、説明のしようがない
364:132人目の素数さん
14/10/21 21:03:47.29
>>362
今になって過去レスを見ると、大学の数学はわからん、抽象的すぎるw
だけど、そうじゃない具体的な数学(笑)があるはずだから、それで
理解したいと思ってた感じ。素人がガロア理論勉強する時に陥りやすい。
数3方式とか、13歳の娘に語る~みたいな本が売れるわけだよ。
どっちも読み通すとなると、それなりに難しいのにな。
365:132人目の素数さん
14/10/21 21:07:52.02
>>363
ありがとう。
数段レベル高そうな君が知らない様子なので多分無いのだと思う。
演算も抽象化してこれこれこういう目的を満すにはこういう特性がないと無理とかいう
演算自体も抽象化して評価できるような理論。
(そういうのがあったら可解になるにはどういう性質が追加する演算に必要なのかを知りたかった。)
多分ないのだと思う。かなり詳しそうな君が知らないみたな雰囲気だから無いのだと思う。
非常に助かりました。ありがとう。
366:132人目の素数さん
14/10/21 21:09:40.82
>>344 数学科の大学生を
ここ笑うとこ?
まともなのもちらほらいるみたいだが、
突然、厨房みたいなのがはしゃぐスレになってるな。
二十歳近辺までいってるなら、それこそ精神遅滞、知恵おくれだよ。
367:132人目の素数さん
14/10/21 21:12:06.42
>>366
おまえリアルで学部の学生知らないだろw
もしかして放送大学か?
368:132人目の素数さん
14/10/21 21:14:15.94
>>366ってスレ主みたいな性格してるなww
369:132人目の素数さん
14/10/21 21:14:56.01
数学科出がやっぱこのスレ多そうだね。
俺は数学科出じゃないけど親友が数学科だった。
高校までの数学と違いすぎて驚いたよ。
大学で高校までの数学に一番近いのは物理学科じゃないかと思う。
やってる内容はかなり高校数学の内容に近いよ。
370:132人目の素数さん
14/10/21 21:15:50.89
>>367
おいおい、放送大学の学生のほうが、スレ主よりはず~~~とマシだよw
371:132人目の素数さん
14/10/21 21:16:59.85
高校までの数学しか知らなくて、大学の数学の内容を知って
驚かななかった?大学1年のころに。
教科書をその親友にみせてもらったけど記号のだらけで読む気になれなかったのを覚えてる。
その親友の言うことには記憶が重要って言ってた。
定理を覚えてないとどうしようもないって。
372:132人目の素数さん
14/10/21 21:18:49.29
>>369
物理の人は具体的計算、数学的論証よりもモデルとした物理系がこうだから数式モデルもこう振舞うはずという議論が好き。
373:132人目の素数さん
14/10/21 21:19:11.85
大学じゃなくて、学生によって性能まったく違うよ。
出てる大学で性能判断は無理だろ。成績トップとビリで性能差ありすぎ。
放送大学は知らんが自然界の法則だと放送大学のトップの性能のやつはかなり優秀なはずだよ。
そこらの大学のザコよりは。
374:132人目の素数さん
14/10/21 21:26:01.43
> 二十歳近辺までいってるなら、それこそ精神遅滞、知恵おくれだよ。
599 :現代数学の系譜11 ガロア理論を読む:2012/03/11(日) 22:57:45.56
>>598
>一応忠告してやる。いい年して、リアルで”おいら”とか”じゃん”とか使うなよ。
忠告ありがとうよ。当然だよ。”おいら”なんて、あくまで2ちゃんねる用語だよ。”私は”じゃ硬すぎるだろ
>>あんたの年齢45以上だろ?
当然だわな。書いている内容見ればある程度年齢は分かるだろうよ
ところで、こちらから一つ忠告しておいてやる
ここで、おいらに突っかかってきても、返り討ちになるだけだぜ。そして、猫氏とKummer氏と3人から袋叩き。馬鹿を晒して、他のスレでの発言力にも影響するだろうよ・・