現代数学の系譜11 ガロア理論を読む10at MATH
現代数学の系譜11 ガロア理論を読む10 - 暇つぶし2ch135:132人目の素数さん
14/10/12 13:43:00.60
どうも、スレ主です
面白そうなページ紹介

URLリンク(www.kurims.kyoto-u.ac.jp)
ガロア理論とその発展 - 京都大学 玉川安騎男 数学入門公開講座テキスト 2006
(抜粋)
§5. ガロア理論の発展― 無限次ガロア理論と遠アーベル幾何

一般にはGal(L/K) は有限群になりませんが、「副有限群」という特別な種類の群になり、「位相」が入って「位相群」となることがわかります。

5.4. スキームの基本群と遠アーベル幾何
前節で「絶対的ガロア理論」という遠アーベル幾何の精神について、例
を挙げて説明しましたが、なぜ「幾何」なのか、なぜ「遠アーベル」なの
か、ということについては説明しませんでした。以下これについて説明し
て本稿を終わりたいと思います。

ムを考えることは本質的に同等であることが知られています。
一般のスキームは、アフィンスキームをはり合わせることにより定義されます。
1950年代後半にグロタンディークによって定義されたこのスキームは、代数多様体(≈ 多項式で定義される図形)の概念を大きく一般化するもので、現在の代数幾何学・数論幾何学の基礎をなす概念です。
グロタンディーク自身により、体のガロア理論は、スキームのガロア理論へと一般化されました。この理論で体の絶対ガロア群に当たるものが、スキームの基本群です。
絶対ガロア群は、与えられた体の(有限次分離)拡大体全体を統制する副有限位相群でしたが、基本群は、与えられたスキームの(有限エタール)被覆全体を統制する副有限位相群です。
スキームの基本群は、通常の位相幾何(トポロジー)で扱う位相空間の基本群の代数的(ないし代数幾何的)な類似と見ることができます。
1980年代初頭、グロタンディークは、遠アーベル幾何という新しい幾何を提唱しました。
その基本的な発想の一つは、遠アーベルスキームと呼ばれるある種のスキームの幾何は、その(アーベル群から程遠い)基本群によって完全に決定されるだろう、というものです。

このように、19世紀前半に生まれたガロア理論は、現代もなお強い生命力を持って進化しています。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch