√(1+√(1/2+√(1/3+√(1/4+√(...))))at MATH
√(1+√(1/2+√(1/3+√(1/4+√(...)))) - 暇つぶし2ch23:132人目の素数さん
14/08/28 21:28:52.55
√√…√(1/(n+m)) (√はm+1個)
=(1/(n+m))^(1/2)^(1/2)^…^(1/2)
=(1/(n+m))^((1/2)*(1/2)*…*(1/2))
=(1/(n+m))^((1/2)^(m+1))
=e^(log1/(n+m))^((1/2)^(m+1))
=e^((log1/(n+m))*((1/2)^(m+1)))
=e^(-log(n+m)/2^(m+1))

ここまで丁寧に書けば分かってもらえるか?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch