現代数学の系譜11 ガロア理論を読む9at MATH
現代数学の系譜11 ガロア理論を読む9 - 暇つぶし2ch143:132人目の素数さん
14/08/31 08:39:25.64
>>136 つづき
>ワインバーグ=サラム理論
URLリンク(ja.wikipedia.org)
概要
1961年、シェルドン・グラショウは量子電磁力学と弱い相互作用を統一する枠組みとして、アイソスピンとストレンジネスとの類推から SU(2)×U(1) の対称性を考えた。
これを、自発的対称性の破れを使い、洗練させたのがワインバーグ=サラム理論である。

連続的な対称性を持った系において、ある種の場がエネルギーが最低の状態(真空)にあるときに、その場がゼロでない値(真空期待値)をもち、対称性を破るようなポテンシャルを実現していた場合、このような対称性の破れ方を自発的対称性の破れという。
南部=ゴールドストーンの定理によると、対称性が自発的に破れている場合には零質量の南部・ゴールドストーン粒子という粒子が現れる。

1967年に発表されたワインバーグ=サラム理論では、ある形で SU(2)L×U(1)Y のチャージを持つヒッグス場を導入し、
ヒッグス場とゲージ場のゲージ相互作用において、ヒッグス場が真空期待値をもった時に質量項を持つ3つのゲージ粒子と一つの無質量のゲージ粒子が現れる。
これらのゲージ粒子は SU(2)L および U(1)Y の場とは別物であり、これらの場の混合によって再定義された場である。
場の混合を表す混合角は弱混合角、もしくはワインバーグ角と呼ばれる。
ゼロでない真空期待値を持つスカラー場の導入によって質量を持つゲージ粒子の予言に成功しており、
その質量はヒッグスの真空期待値の大きさ(246GeV)とゲージ群 SU(2)L および U(1)Y に対応する2つのゲージ結合定数によって表され、これらの値は実験から精度よく決まっている。
ヒッグス粒子の発見により、実験的にもワインバーグ=サラム理論は完全実証に至った。

内容
ワインバーグ=サラム理論はゲージ群 SU(2)L×U(1)Y に対するヤン=ミルズ=ヒッグス理論である。 SU(2)L の部分はウィークアイソスピンなどと呼ばれ、U(1)Y の部分は弱超電荷などと呼ばれることもある。
ヒッグス機構により、SU(2)L×U(1)Y は 元の U(1)Y とは異なる U(1) に破れる。これを電磁相互作用のゲージ群 U(1)EM と同一視する、と言うのがこの理論における電弱相互作用の統一の流れである。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch