現代数学の系譜11 ガロア理論を読む9at MATH
現代数学の系譜11 ガロア理論を読む9 - 暇つぶし2ch141:132人目の素数さん
14/08/30 14:22:20.41
>>139 補足

参考:群論
URLリンク(ja.wikipedia.org)
研究史
群論は、歴史的に3つの源泉がある。数論、代数方程式論、幾何学である。数論の系統は、オイラーに始まり、ガウスの合同式の理論、および二次体に関係した加法群・乗法群の研究によって発展した。

置換群に関する初期の研究成果は、ラグランジュ、ルフィニ、アーベルらの、代数方程式の一般解の研究の課程で得られた。

エヴァリスト・ガロアは「群」という用語を作った。 彼は、初期の群論と現在の体論を結びつけた。

幾何学については、群はまず射影幾何学で、のちに非ユークリッド幾何学で重要になった。 フェリックス・クラインはエルランゲン・プログラムにおいて、 群論は幾何学の原理を統合するものになることを予言した。

1830年代、エヴァリスト・ガロワが初めて、代数方程式の可解性の判定に、群を導入した。 アーサー・ケイリーとコーシーはこの研究を発展させ、 置換群の理論を創設した。

歴史的な2番目の源泉としては、幾何学方面からの流れがある。 可能な幾何学(ユークリッド幾何学、双曲幾何学、射影幾何学)へ群を適用したのは、 フェリックス・クラインのエルランゲン・プログラムに始まる。

1884年、ソフス・リーは群(現在リー群として知られている)を解析的問題に適用した。 三番目に、群は(最初は暗黙的に、後に明示的に)代数的整数論に用いられた。

これら初期の源流では、観点が違っていたので、そのため群に対する観念も違ったものとなっていた。
1880年頃から群の理論の統合がなされてくる。 そして、群論の影響はますます増大し、20世紀初期には抽象代数学、表現論など多くの派生分野が成立した。
有限単純群の分類(classification of finite simple groups)は、20世紀中頃より膨大な量の研究がなされ、ついに完成に至った。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch