14/05/01 09:43:21.25
同数累加が即ち掛け算と思ってる奴、いい加減にやめておいたほうがいい。それ、掛け算の技法だから。
もっとも、教科書会社的にはだけど(文科省がプッシュしている可能性は否定しない)。
掛け算の「意味」とされているのは倍概念なんだよ。一部の順序固定派は順序だと言うけどね。
ただ、掛け算習ってしばらくは同数累加で計算する。倍概念は昔言ってた比で理解するのが難しい。
2を3個足すのは2×3(順序のことはおいておく)だけど、それを2の3倍と言うんだよ、で留める。
そうとも言う、と付け加えるだけなのね。分かんなくてもいいんだ。慣れてからトライしてもらう。
教科書会社によっては同数累加は掛け算の計算技法だとしている。例えば筆算はそうなっている。
それで慣れてから、小数を習いだす頃に倍概念(割合)に本格的に入って行く。
(一つ分)×(いくつ分)は同数累加と倍概念の境界上に位置するよう考案されたものなんだよ。
だから、同数累加で押し通そうとしても駄目だ。倍概念には部分的にしか対応できない。
幾何学的イメージなら、アレイ図から長方形の面積へ。数の計算としてはそんなとこだな。
でだ、掛け算の順序問題は助数詞の問題なんだよ。数だけであれこれ言っても仕方ない。
言葉としては助数詞(無次元なことに注意)なんだけど、そこからイメージされるものだな。
一つ分は塊の数と言ったりする。同数累加なら同数に相当する。いくつ分が累加の回数。
仮に同数累加限定だとして、(いくつ分)×(一つ分)という式をどうするか。そこが問題だ。
1.小学校の算数習い終えた段階で、つまり算数の掛け算としてどうなのか。そこが一つ。
2.どういう段取りで教えるか。つまりカリキュラムの組み方としてどうなのか。そこも一つ。
その二つはまず切り分けて考えないといけない。まず1について答を出しておく必要がある。
何を教えるのか、教えるほうがはっきり分かっていていないと、どう教えるかの答は出ない。
少なくとも、2×3は2+2+2、3×2は3+3だから別物、なんて言ってる奴はこの議論に不要。
そんなことは誰も問題としていない。例えば数としては掛け算の交換法則、しっかり教えるからね。