14/07/05 08:16:49.57
>>608-609
宮野 悟、小島 寛之氏について補足して、何が言いたいのか? それは下記
1.どちらも数学科出身だけど、数学以外の分野で活躍している
2.小島 寛之氏の方は、”ガロア理論は必須の道具であり、一生懸命勉強したのだけど、最終的に「身体でわかった!」というところにたどり着くことができなかった。”という
3.宮野悟氏は、ガロア理論を理解する卓越した人だと
4.でも、どっとの行き方もありじゃない? そのとき、自分が必要と思うだけ勉強して、チャレンジして自分なりに深いところまで理解したと思ったら。
5.戻ると、「おまえリンク貼っているけど理解できてないだろ」>>602と言いたいんだろうけど、「べつにー」「それがどうしたー」と。
6.この分野で論文書くつもりもなく、シャーロックホームズの代わりに読んでいるんで、「これで良いのだー!」と。どっかで、仕事に使えるかもしれんしね
611:132人目の素数さん
14/07/05 09:55:56.55
>>610
訂正
4.でも、どっとの行き方もありじゃない?
↓
4.でも、どっちの行き方もありじゃない?
612:132人目の素数さん
14/07/05 16:15:39.61
>>610 補足
理解について、普通二つの方策があると思う
一つは、一歩ずつきちんと理解してから次の一歩へ
一つは、分からなくとも先へ進む。先へ進むことで、「あのときのあれは、こういう意味だったんだ」と分かることも多い
普通、この二つを使い分ける
でもね、大学以上、特に社会人になったら、後者のやり方が増える。それで良いと思う。
一つ論文を読む。分からないところがある。別の論文を読む。それで分かる場合も多い。それを繰り返す。
でもあるとき、もう少ししっかり基礎固めをしようと、きちんと自分の理解を一歩一歩固める。
この二つをうまく使い分けることが大事じゃないか
613:132人目の素数さん
14/07/05 17:11:59.74
>>601 関連
URLリンク(www.alainconnes.org)
NONCOMMUTATIVE GEOMETRY AND THE RIEMANN ZETA FUNCTION Alain Connesの
P12 ”The C algebra closure of HC is Morita equivalent (cf. M. Laca) to the crossed product C algebra,”
Morita? 検索すると下記。あまり知られていないが、森田紀一さんすごいね
URLリンク(en.wikipedia.org)
Morita equivalence
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.
URLリンク(en.wikipedia.org)
URLリンク(www.ams.org)
Arhangelskii, A.V.; Goodearl, K.R.; Huisgen-Zimmermann, B. (June–July 1997), "Kiiti Morita 1915-1995" (PDF), Notices of the American Mathematical Society (Providence, RI: American Mathematical Society) 44 (6): 680–684
URLリンク(ja.wikipedia.org)
森田紀一
URLリンク(pantodon.shinshu-u.ac.jp)
Morita equivalence
Morita 同 値 という 概 念 はどんどんその 適 用 範 囲 を 広 げている 。
元 々 は , 森 田 紀 一 氏 によ っ て [ Mor58 ] で 導入 された 環 の 間 の 同 値 関 係 であるが , 今 や operad や groupoid など 他 の 代 数 的 構 造 や 圏 論 的 構 造 にも Morita 同 値 の 概 念 が 拡 張 さ れ , 盛 んに 使 われている 。