14/04/27 06:55:49.53
>>484
つづき
URLリンク(www.geocities.jp)
4次元の特殊性
(抜粋)
【1】ドナルドソンの定理(4次元の特殊性)
興味深いことに,n次元ユークリッド空間R^nでは,
次元 微分構造
数直線 1
平面 1
空間 1
4次元空間 ∞
5次元空間 1
6次元空間 1
つまり,4次元空間では微分構造の数が無限個になるというのです.
このことは1982年にドナルドソンという数学者が最初に証明したのですが,
ドナルドソンは4次元微分可能多様体にゲージ理論を適用してR^4に異種構造が存在する,そして3次元や5次元のユークリッド空間ではこのようなことは決して起こらないことを示して数学界を驚かせました.
4次元のエキゾチックなR^4存在するということは,4次元多様体の特異性を際立たせる重要な定理です.しかし,ドナルドソンの定理は理論物理学にでてくるヤン・ミルズ場を使った難解な内容のため,おいそれと近づくことさえできませんでした.
その証明を易しくしたのが,4つの力の統一を目指した「超弦理論」で名高いウィッテンです.