現代数学の系譜11 ガロア理論を読む8at MATH
現代数学の系譜11 ガロア理論を読む8 - 暇つぶし2ch485:現代数学の系譜11 ガロア理論を読む
14/04/27 06:55:49.53
>>484
つづき

URLリンク(www.geocities.jp)
4次元の特殊性
(抜粋)

【1】ドナルドソンの定理(4次元の特殊性)
 興味深いことに,n次元ユークリッド空間R^nでは,
  次元     微分構造
  数直線     1
  平面      1
  空間      1
  4次元空間   ∞
  5次元空間   1
  6次元空間   1
つまり,4次元空間では微分構造の数が無限個になるというのです.
 
 このことは1982年にドナルドソンという数学者が最初に証明したのですが,
ドナルドソンは4次元微分可能多様体にゲージ理論を適用してR^4に異種構造が存在する,そして3次元や5次元のユークリッド空間ではこのようなことは決して起こらないことを示して数学界を驚かせました.
 
 4次元のエキゾチックなR^4存在するということは,4次元多様体の特異性を際立たせる重要な定理です.しかし,ドナルドソンの定理は理論物理学にでてくるヤン・ミルズ場を使った難解な内容のため,おいそれと近づくことさえできませんでした.
 
 その証明を易しくしたのが,4つの力の統一を目指した「超弦理論」で名高いウィッテンです.


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch