現代数学の系譜11 ガロア理論を読む8at MATH現代数学の系譜11 ガロア理論を読む8 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト365:現代数学の系譜11 ガロア理論を読む 14/03/02 11:46:23.64 物理モデル http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1330049398 数学の証明で物理学の考え方を使う 2009/8/30 (つづき) ハミルトンのリッチフロー研究の最大の困難に、極限のリッチフローの収束性の問題がありますが、 これを救ったのがペレルマンの「局所崩壊の非存在」で、有限時間t=Tで発生した時空の特異点を拡大すると、極限には過去に無限に伸びたリッチフロー、つまり無限に発展する逆向きリッチフローというものが作れます。(これを古代解とよびます) 一般に拡散方程式(熱・リッチフロー方程式)は逆向きに解けませんので、過去に無限にさかのぼれるリッチフローの解を作ることは非常に特殊なことで、分類の対象になりえます。 この分類で使ったアイディアが熱浴です。(しかし詳細は私には理解できませんでした。) さらにペレルマンはリッチフローの局所的な情報を関数に吸収する仕組みを作りました。 統計力学では拡散によって失われた情報はエントロピーになりますが、ペレルマンは拡散によって失われた情報を拾うエントロピーを導入するというアイディアを出しました。 そのために分配関数からエントロピーなど熱力学関数を構成する仕組みをつくりました。このエントロピーは拡散によって失われる情報を受け止め、リッチフローの局所的解析を可能とします。 ペレルマンはリッチフローが有限時間で到達した時空の特異点を拡大して見たときに見えてくる古代解は、「エントロピーが有限」という性質で特徴づけられることを示し、 エントロピーの有限性・単調性を用いて古代解の時空を拡大して見た極限を求め、古代解の分類を可能にしました。(この意味でペレルマンの仕事はエントロピー増加法則の極限をとって希薄気体の速度分布を決定した、ボルツマンのH-定理に近いそうです。) (おわり) 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch