14/03/01 11:00:31.71
>>358
つづき
グレゴリー・ペルルマン(1966~)によるポアンカレ予想と幾何化予想の証明
1991年に開設され、科学的成果を速やかに配布するために研究者たちによって構築されたインターネット・アーカイブである "arXiv :ギリシア語でXはカイと発音される”に2002年秋から2003年夏にかけて三つの論文が投稿された ;
1. 2002年11月11日 30ページの論文
”リッチ・フローに関するエントロピー公式とその幾何学的応用 :
The entropy formula for the Ricci flow and its geometric application"
2. 2003年3月10日 22ページの論文
”三次元多様体上の手術付きリッチ・フロー :
Ricci flow with surgery on three-manifolds"
3. 2003年7月17日 7ページの論文
"一定の三次元多様体うえのリッチ・フローの解に対する有限消滅時間 ;
Finite extincion time for the solution to the Ricci flow on certain three-manifolds"
この3編の論文こそは、この100年来、無数の数学者が挑戦し、敗れ去ってきたポアンカレ予想と、それを拡大したハミルトンの幾何化予想の完全な証明でありました。
これらの論文が何を意味するかは、直ぐには誰にも理解できなかったが、しかしペレルマンから送られたメールを受け取った友人やその同僚の専門家たちが注目することになり、これらが途方も無い成果であるとの評判がじわじわと広がりました。
注目すべきは、先のインターネットでの論文でもそうでしたが,これらの講義においても、自分が幾何化予想やポアンカレ予想を証明したとは一言も述べず、リッチ・フローの方程式を基に如何にしてハミルトンが立ち往生した特異点の問題を解決したかを、淡々と述べた;
ハミルトンが直面し、解決できなかった特異点の問題については ;
多様体内の空間が崩壊する寸前まで曲率が大きくなった時、予想外の規則性が生じる、即ち局所非崩壊定理と呼ばれることになった定理で、葉巻型特異点の出現は数学的にありえないことを発見した。
更に特異点が発生した時点で、元の多様体から切り取って(手術して)同種の幾何構造を持たせることが出来ることを見出した。