現代数学の系譜11 ガロア理論を読む8at MATH現代数学の系譜11 ガロア理論を読む8 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト359:現代数学の系譜11 ガロア理論を読む 14/03/01 10:57:19.11 >>318 >リッチフローと幾何化予想 小林亮一 著 を読んでいる http://www15.plala.or.jp/gemuseum/gemstry-poincare,html.htm リチャード・ハミルトン(1943~)のリッチ・フロー ハミルトンは多様体の整形を目論んだのだ。熱が部屋中に満遍なくいきわたるように、多様体を曲率が均一に均された物体に整形しようとした。 そしてリッチ・フローに関する1982年の”正の曲率を持つ三次元多様体"と題する最初の論文で、彼はある種の特殊な三次元多様体は球面に変形すると示した。 つまり、ある領域(トポロジー)の問題を別の領域の道具(微分方程式)で解こうと提案した。 どんなよれよれでも、ひしゃげていても、ねじれた多様体であれ、リッチ・フローによって変形する様子を見守る。 どんな形になるだろうか? もし8個の素多様体のうちの一つか、その組み合わせになれば、サーストン予想が正しいことになる。どんな形であれ、単連結の多様体が最終的に跡形も無く「パッ」と消えたなら、ポアンカレ予想が証明されたことになる。 しかしながら、リッチ・フローの操作よって多様体の体積や形が変わってしまう特異点の問題が壁のように立ちはだかった。 多様体を必要なだけ膨張または収縮させることで処理前後の体積を一手に保つ"繰り込み"と言う操作で解決できる例もあった。 特異点が現れる寸前までリッチ・フローを走らせ、止める、望ましくない部分を切り取る、残った多様体の断面に半球状の蓋をあてがって傷跡を閉じる・・・・等々の”手術法”にて解決する。 しかしながら20年に及ぶ格闘の末にどうしても”手術”では解決できない葉巻型特異点にぶつかり、最終的に行き詰まってしまった。 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch