現代数学の系譜11 ガロア理論を読む8at MATH
現代数学の系譜11 ガロア理論を読む8 - 暇つぶし2ch353:現代数学の系譜11 ガロア理論を読む
14/02/23 21:48:59.22
あれ? こんなのもあるよ

URLリンク(detail.chiebukuro.yahoo.co.jp)
なぜ一元数、二元数、四元数があるのに三元数がないのですか。 問日時: 2012/2/4

354:現代数学の系譜11 ガロア理論を読む
14/02/23 21:51:01.16
>>352
乙す
いやー、長文だし
この板では、複雑な数式や記号は引用できないから

355:132人目の素数さん
14/02/25 23:23:13.04
明日の16時39分頃に気をつけて下さい。
日本にも世界にも巨大地震が起きませんように。
皆さんも一緒に祈って下さい。

太陽フレアのXが発生したそうです。
太陽黒点数の100越えが24日間継続しているようです。

356:現代数学の系譜11 ガロア理論を読む
14/03/01 10:19:40.97
>>355

面白いね
古くは『ノストラダムスの大予言』

URLリンク(ja.wikipedia.org)
『ノストラダムスの大予言』(ノストラダムスのだいよげん)は、1973年に祥伝社から発行された五島勉の著書。フランスの医師・占星術師ノストラダムスが著した『予言集』(初版1555年)について、彼の伝記や逸話を交えて解釈するという体裁をとっていた。
その中で、1999年7の月に人類が滅亡するという解釈を掲載したことにより、公害問題などで将来に対する不安を抱えていた当時の日本でベストセラーとなった。実質的に日本のノストラダムス現象の幕開けとなった著作である。

翌1974年には、東宝でこれを原作にした文部省推薦の同名の映画も制作公開されている。その作品については、ノストラダムスの大予言 (映画)を参照のこと。

社会的な影響

宮崎哲弥や山本弘は、ベストセラーになったこの本が1980年代以降の新興宗教に少なからぬ影響を与えたと指摘している。
実際、この時期の新興宗教には、自分の教団(もしくは教祖)こそが、上記の世界を救う「別のもの」[8]であると主張するものも見られた。さらにこうした影響がその後のオウム真理教による地下鉄サリン事件発生の遠因になったと指摘する者たちもいる[9]。

その他の影響としては、キリスト教やユダヤ教の終末論とはかけ離れた終末思想を生み出し、
深刻に受け止めた若い世代の読者が、世界や日本の未来のみならず自己の未来をも暗澹たるものと考えてしまったため刹那的な行動に走ったり、将来設計を怠るなどの問題があったという見方がある[要出典]。

357:現代数学の系譜11 ガロア理論を読む
14/03/01 10:26:18.76
>>356
21世紀になってからは、ジュセリーノだろうか

URLリンク(ja.wikipedia.org)
ジュセリーノ・ノーブレガ・ダ・ルース(Jucelino Nobrega da Luz, 1960年 3月[1]- )はブラジルの英会話教室の教師[2]。
予知夢(予知的明晰夢)による予言ができる予言者として日本の一部マスメディアで紹介されている。パラナ州マリンガ市フロリアーノ出身。妻と4人の子供がいる[1]。サンパウロ州アグアス・デ・リンドーヤ市在住[2]。

日本では2006年末以降、テレビ朝日、日本テレビ、テレビ東京などの特別番組で紹介された他、翌2007年4月以降、予言に関する著書が出版され、講演会も行っている。
しかし、2008年末のテレビ朝日の超常現象特番を降板(後述)して以降はほとんどテレビ出演は無くなり、ブームはほぼ沈静化した。ブラジルではほとんど無名である。

日本のテレビ番組では予言的中率90%以上と紹介されることもあるが、
著書やテレビ番組等で第3者が事前に確認できる形で行った予言の的中率は非常に低く、当たったとされる予言のほとんどは、予言された事象が実際に発生してから「実は事前に当事者に警告していた」と主張する予言である。

彼の活動の場は日本国内のマスコミに限られており、本国のブラジルで彼の名を知る人はほとんどいない。

358:現代数学の系譜11 ガロア理論を読む
14/03/01 10:40:18.84
>>355-357
共通点は、だれにも分からない、従って厳密な否定も肯定もできないことに、確かな根拠無く言及している(日食の計算や天気予報と根本的に異なる)
人に不安を起こさせる言及であること

356-357の共通点は、マスコミの悪のり
マスコミにしてみれば、なんでも良い
視聴率さえ取れれば
というか、くそネタでもでたらめでも、視聴率取れる話題なら「それに乗らなければ上司から怒られる」という腐った業界なんです(公正な報道とはほど遠い)

それが、古くは『ノストラダムスの大予言』現象を生み出し、21世紀にジュセリーノを生み出した

加えて、「人は複数の人あるいは媒体から同じ情報を得ると信じやすい」という傾向がある
裏を取るという言葉がある。一つの情報に接したとき、それを別の詳しい人に聞いてみて「どうだ?」と。これは普通だけれど。周りに二人三人と信じ込んでいる人がいると、集団催眠で自分も信じてしまう。(宗教の原理かも・・)

その歯止めが数学じゃないでしょうか?
「明日の16時39分頃に気をつけて下さい。」って、数学的に証明されているのか?と

359:現代数学の系譜11 ガロア理論を読む
14/03/01 10:57:19.11
>>318
>リッチフローと幾何化予想 小林亮一 著 を読んでいる

URLリンク(www15.plala.or.jp)
リチャード・ハミルトン(1943~)のリッチ・フロー

 ハミルトンは多様体の整形を目論んだのだ。熱が部屋中に満遍なくいきわたるように、多様体を曲率が均一に均された物体に整形しようとした。
 そしてリッチ・フローに関する1982年の”正の曲率を持つ三次元多様体"と題する最初の論文で、彼はある種の特殊な三次元多様体は球面に変形すると示した。
 つまり、ある領域(トポロジー)の問題を別の領域の道具(微分方程式)で解こうと提案した。
 どんなよれよれでも、ひしゃげていても、ねじれた多様体であれ、リッチ・フローによって変形する様子を見守る。
 どんな形になるだろうか? もし8個の素多様体のうちの一つか、その組み合わせになれば、サーストン予想が正しいことになる。どんな形であれ、単連結の多様体が最終的に跡形も無く「パッ」と消えたなら、ポアンカレ予想が証明されたことになる。
 しかしながら、リッチ・フローの操作よって多様体の体積や形が変わってしまう特異点の問題が壁のように立ちはだかった。
多様体を必要なだけ膨張または収縮させることで処理前後の体積を一手に保つ"繰り込み"と言う操作で解決できる例もあった。
特異点が現れる寸前までリッチ・フローを走らせ、止める、望ましくない部分を切り取る、残った多様体の断面に半球状の蓋をあてがって傷跡を閉じる・・・・等々の”手術法”にて解決する。
 しかしながら20年に及ぶ格闘の末にどうしても”手術”では解決できない葉巻型特異点にぶつかり、最終的に行き詰まってしまった。

360:現代数学の系譜11 ガロア理論を読む
14/03/01 11:00:31.71
>>358
つづき

グレゴリー・ペルルマン(1966~)によるポアンカレ予想と幾何化予想の証明
 1991年に開設され、科学的成果を速やかに配布するために研究者たちによって構築されたインターネット・アーカイブである "arXiv :ギリシア語でXはカイと発音される”に2002年秋から2003年夏にかけて三つの論文が投稿された ;

1. 2002年11月11日 30ページの論文
 ”リッチ・フローに関するエントロピー公式とその幾何学的応用 : 
 The entropy formula for the Ricci flow and its geometric application"

2. 2003年3月10日  22ページの論文
 
 ”三次元多様体上の手術付きリッチ・フロー : 
 Ricci flow with surgery on three-manifolds"

3. 2003年7月17日 7ページの論文
 "一定の三次元多様体うえのリッチ・フローの解に対する有限消滅時間 ;
 Finite extincion time for the solution to the Ricci flow on certain three-manifolds"

 この3編の論文こそは、この100年来、無数の数学者が挑戦し、敗れ去ってきたポアンカレ予想と、それを拡大したハミルトンの幾何化予想の完全な証明でありました。

 これらの論文が何を意味するかは、直ぐには誰にも理解できなかったが、しかしペレルマンから送られたメールを受け取った友人やその同僚の専門家たちが注目することになり、これらが途方も無い成果であるとの評判がじわじわと広がりました。

 注目すべきは、先のインターネットでの論文でもそうでしたが,これらの講義においても、自分が幾何化予想やポアンカレ予想を証明したとは一言も述べず、リッチ・フローの方程式を基に如何にしてハミルトンが立ち往生した特異点の問題を解決したかを、淡々と述べた;
 ハミルトンが直面し、解決できなかった特異点の問題については ;
 多様体内の空間が崩壊する寸前まで曲率が大きくなった時、予想外の規則性が生じる、即ち局所非崩壊定理と呼ばれることになった定理で、葉巻型特異点の出現は数学的にありえないことを発見した。
 更に特異点が発生した時点で、元の多様体から切り取って(手術して)同種の幾何構造を持たせることが出来ることを見出した。

361:現代数学の系譜11 ガロア理論を読む
14/03/01 11:22:28.30
>>358
>リッチフローと幾何化予想 小林亮一 著 を読んでいる

ペルルマンは、21世紀の数学だなという印象
20世紀に発展した特異点の解析、ソリトン、位相幾何・・などの理論が縦横に駆使されている
加えて、物理モデルからのアイデアの転用(エントロピー、熱浴・・)(物理モデルからの数学への刺激は古くからありますが・・)

その上に開花したペルルマンのリッチ・フロー解析による幾何化予想の解決
なんで、伝統的な位相幾何手法で解けなかったのか?

思うに、>>322"現状位相幾何は、幾何とは言いながらホモロジー群等を用いて代数的に解く場合がほと
んどで、義務教育の幾何のように補助線を引いて幾何的に解くものではないので、勢い「すり抜け
落ちる」幾何的本質があまりにも多く、かつ議論や定理が実用にならないほど高次元に行きがちです。"ってことかな?

ペルルマン理論で、「リッチフローと幾何化予想 小林亮一 」P290 "カットオフつきリッチフローの長時間における振舞い"などで、
”スカラー曲率が負の領域がいつまでも残る場合”などの解析が、位相幾何的手法では細かくきちんと扱えないってことでしょうかね?
そこに切り込んで行けるのが、リッチ・フロー解析だと

三次元多様体の中に、位相幾何的手法では扱いずらい病的なあるいは例外的な対象があって、それが幾何化予想の障害になっていた
だから、位相幾何的手法だけでは結局解けなかったのでは・・。外しているかも知れませんが、そういうふうに読みました

362:現代数学の系譜11 ガロア理論を読む
14/03/01 15:39:09.40
>>361
下記がなかなか分かりやすい
URLリンク(www.ivis.co.jp)
株式会社アイヴィス わかみず会ホームページ
2010/5/26(水) ポアンカレ予想(ジョージ.G.スピーロ)」の紹介(第259回) 古村 哲也 講演資料ダウンロード ① ② ③

URLリンク(www.ivis.co.jp)
11章 消える特異点、消えない特異点

さらには「葉巻型特異点」もある。これがなんともいまいましい代物なのだ。葉巻の表面は二次元物体だ。
ここでそれに一次元の線分を掛けて四次元空間に浮かぶ三次元物体を作る。葉巻の端部分は曲がっているため、曲率が増えどんどん曲がって小さくなり、ついには収縮しきってしまう。ところがもう一つの方向では、線分は真直ぐで動かない。
こうして物体は二つの次元では縮むが、残りの次元ではそのままになる。シャボン玉のように「パッ」と消えるわけでなく、腹を割かれた風船のように「パフッ」と萎む。
ハミルトンは十年を費やし解決法を探し、厄介な病変部を取り除く手術を見つけた。
たが、葉巻型特異点だけは、手術によっても問題を排除できなかった。

12章 葉巻の手術

新しいエントロピーの概念が得られたので、ペレルマンの葉巻型特異点に対する準備は整った。ペレルマンは彼流のエントロピー概念と込み入った数式を使って、多様体が余り強く婉曲できないことを証明したのだ。
「パッ」と消える多様体を除けば、潰れていく傘体の間にエンドウ豆が挟まるように、小さなボールが残る余地は充分あるに違いない。
したがって、放物型リスケーリングという条件の下で見た場合、多様体はリッチ・フローのさなかに崩壊できないことになる。
全面的に潰れ込むのをエンドウ豆が防ぐのだ。多様体は「パッ」と消えることはできても、「バフッ」と萎んで消えることはできない。
この局所非崩壊定理とよばれることになった定理は、葉巻型特異点に対処するうえで欠かせない、要の要素である。
前に見たように、リッチ・フローの法則によれば、葉巻は最終的に崩壊するはずである。その一方で、ペレルマンは崩壊があり得ないことを証明した。
この二つの事実を組み合わせれば、葉巻型特異点の出現は数学的にあり得ないということになる。

363:現代数学の系譜11 ガロア理論を読む
14/03/01 20:21:48.54
ここらの話は高度に数学的ですよね

URLリンク(www.nikkei.com)
ヒッグス発見は一里塚 日米欧で追う謎多き次の粒子 日経サイエンス (2/2ページ) 2014/3/1
■日本の拠点「J-PARC」

 そしてもう1つ、謎が多いのがミュー粒子だ。

 ミュー粒子は質量が電子の約200倍も大きい以外は電子とうり二つの素粒子。このミュー粒子を用いて陽子の半径を測定したところ、電子を用いて測定した場合よりも半径がかなり小さくなってしまった。
またミュー粒子の磁気モーメントという特性を精密に測定した実験結果と理論値にはズレがあることもわかった。

 こうしたミュー粒子の実験の矛盾やズレの背後には、標準理論を超えた新理論から予測される新たな粒子の存在があるのかもしれない。日米欧はさらなる実験でミュー粒子の謎を解き明かそうとしている。

 日本の拠点となるのは茨城県東海村にある大強度陽子加速器施設J-PARCだ。

 強力な陽子ビームを使って非常に高品質のミュー粒子ビームを生み出し、磁気モーメントを従来の実験よりもさらに高い精度で求める。高エネルギー加速器研究機構を中心に,現在そのための装置を開発中で、10年代後半の実験開始を目指している。

(詳細は25日発売の日経サイエンス4月号に掲載)

364:現代数学の系譜11 ガロア理論を読む
14/03/02 11:44:42.92
物理モデル
URLリンク(detail.chiebukuro.yahoo.co.jp)
数学の証明で物理学の考え方を使う 2009/8/30

ポアンカレ予想をペレリマンが証明したとき、物理学考え方も使ったと聞きました。
そこで疑問に思ったのですが、彼は物理学考え方をどんな場面でどのようにして使ったのでしょうか。
物理学には公理がないので公式等は説明はできても証明はできないはずです。それを、完全無欠のみ許される数学の証明で、どうやって使ったのかが、とくに気になります。
以上の2点をお願いします。

補足
エネルギーや温度をどういう風に使ったのか分かりませんか(エネルギーや温度を使えば、どんなことができるのか等)?説明は専門的になってもかまいません。

ベストアンサーに選ばれた回答
ほとんど『解決!ポアンカレ予想』(日本評論社)からの抜粋になってしまいますが、以下のようになります。

リッチフローが有限時間Tで時空の特異点に達し、その特異点のまわりで連結和分解を特徴づける曲率と体積の関係(これは結局定曲率球面の曲率は半径の二乗に反比例するという当然の結果だそうで、
「局所崩壊の非存在」といいます)が成り立たないということが仮に起きたとします。すると時刻Tの周りを拡大してみると、特異点から変な確率分布をもった空間が出ていて、対数ソボレフ不等式に矛盾しているそうです。
これは不可能ですから連結和分解が起きていないといけないのですが、連結和分解が起きていることの証明は実際には込み入った議論を要します。しかしその議論の大きなアイディアは統計力学です。
ペレルマンは浴熱(thermostat)の概念をリーマン幾何に導入しました。
(つづく)

365:現代数学の系譜11 ガロア理論を読む
14/03/02 11:46:23.64
物理モデル
URLリンク(detail.chiebukuro.yahoo.co.jp)
数学の証明で物理学の考え方を使う 2009/8/30

(つづき)
ハミルトンのリッチフロー研究の最大の困難に、極限のリッチフローの収束性の問題がありますが、
これを救ったのがペレルマンの「局所崩壊の非存在」で、有限時間t=Tで発生した時空の特異点を拡大すると、極限には過去に無限に伸びたリッチフロー、つまり無限に発展する逆向きリッチフローというものが作れます。(これを古代解とよびます)
一般に拡散方程式(熱・リッチフロー方程式)は逆向きに解けませんので、過去に無限にさかのぼれるリッチフローの解を作ることは非常に特殊なことで、分類の対象になりえます。
この分類で使ったアイディアが熱浴です。(しかし詳細は私には理解できませんでした。)

さらにペレルマンはリッチフローの局所的な情報を関数に吸収する仕組みを作りました。
統計力学では拡散によって失われた情報はエントロピーになりますが、ペレルマンは拡散によって失われた情報を拾うエントロピーを導入するというアイディアを出しました。
そのために分配関数からエントロピーなど熱力学関数を構成する仕組みをつくりました。このエントロピーは拡散によって失われる情報を受け止め、リッチフローの局所的解析を可能とします。
ペレルマンはリッチフローが有限時間で到達した時空の特異点を拡大して見たときに見えてくる古代解は、「エントロピーが有限」という性質で特徴づけられることを示し、
エントロピーの有限性・単調性を用いて古代解の時空を拡大して見た極限を求め、古代解の分類を可能にしました。(この意味でペレルマンの仕事はエントロピー増加法則の極限をとって希薄気体の速度分布を決定した、ボルツマンのH-定理に近いそうです。)
(おわり)

366:現代数学の系譜11 ガロア理論を読む
14/03/02 11:48:47.22
>>364

浴熱(thermostat)

浴熱(heat-bath)

ですね。

367:現代数学の系譜11 ガロア理論を読む
14/03/02 11:49:47.17
>>366
訂正

浴熱(thermostat)

熱浴(heat-bath)

ですね。

368:132人目の素数さん
14/03/02 13:16:22.92
どうでもいいけど古代解という和訳は何とかならんですか

369:現代数学の系譜11 ガロア理論を読む
14/03/02 13:17:58.08
中村 正三郎が書いていた
URLリンク(iiyu.asablo.jp)
リッチフローと幾何化予想 (数理物理シリーズ)ホットコーナーの舞台 中村 正三郎 2012年01月19日
ASAHIネット(URLリンク(asahi-net.jp)<) )に転載したものから

URLリンク(iiyu.asablo.jp)
新井敏康「数学基礎論」、S.マックレーン「圏論の基礎」で名前を出した
URLリンク(www.amazon.co.jp)
数学基礎論 [単行本]新井 敏康 (著)のお買い上げが、またあって、ありがとうございます。
 上記を書いたときから、気になっていた関連書があった。
URLリンク(www.amazon.co.jp)
リッチフローと幾何化予想 (数理物理シリーズ) [単行本]
小林 亮一 (著)
 そのときは、まだ在庫があったと思うが、いま、もうなくて、「この本は現在お取り扱いできません」だ。
 紀伊國屋書店には、あるね。アマゾンの商品説明より詳しい。
URLリンク(bookweb.kinokuniya.co.jp)
数理物理シリーズ〈5〉リッチフローと幾何化予想 小林 亮一【著】培風館 (2011/06/06 出版)

 おれ、数学はわからないけど、リッチフローや幾何化予想という言葉は知ってる。ペレルマンが、大難問だったポアンカレ予想を解いたときに使われた数学だというくらいも知っている。
 多くの数学者が、ポアンカレ予想は、てっきりトポロジーの技術で解かれるものと思っていたら、ペレルマンは物理学の技術で解いたというのが面白かった。
 それと、数学界最高の名誉であるフィールズ賞を辞退したというのも、話題になった。

 著者の小林亮一先生の紹介があった。 でも、書いてあることの意味がさっぱりわからん。^^;
URLリンク(www.math.nagoya-u.ac.jp)
小林 亮一(こばやし りょういち/ KOBAYASHI, Ryoichi)
 この前、
URLリンク(iiyu.asablo.jp)
量子力学の根本原理、ハイゼンベルクの不確定性原理の見直し迫る小澤の不等式でも書いたが、小林先生も名古屋大学だ。
名大。当たりまくってるね。\(^O^)/
URLリンク(ja.wikipedia.org)幾何化予想

370:現代数学の系譜11 ガロア理論を読む
14/03/02 13:19:09.34
>>368
乙です
ここで言っても仕方ないかもしれないが・・、代案は?

371:現代数学の系譜11 ガロア理論を読む
14/03/02 14:15:40.54
これ面白いね

URLリンク(faculty.ms.u-tokyo.ac.jp)
2次元球面と3次元球面 坪井俊 数理・情報一般 数学の現在・過去・未来 東大 2010
URLリンク(faculty.ms.u-tokyo.ac.jp)

3次元球面
「2次元複素ベクトル空間と3次元球面」
「ホップ・ファイブレーション」
「ポアンカレ予想の主張、幾何化予想、ペレルマンの方法」

372:現代数学の系譜11 ガロア理論を読む
14/03/02 15:05:54.11
>>371
上で紹介されているが、下記ビデオ4次元が面白いね

URLリンク(faculty.ms.u-tokyo.ac.jp)
DIMENSIONS 日本語版のページ

DIMENSIONSは,Jos Leys, Etienne Ghys, Aurelien Alvarezが作り,Creative Commonsライセンスに従って提供している数学の啓蒙のためのビデオです.

DIMENSIONSは2010年度フランス数学会ダランベール賞を受賞しました.

373:132人目の素数さん
14/03/03 23:03:35.39
ガロア理論が一個も出てこないんですけど

374:132人目の素数さん
14/03/04 13:07:55.71
>>370
代案はいらん

375:132人目の素数さん
14/03/06 23:03:51.50
台湾バナナ

376:現代数学の系譜11 ガロア理論を読む
14/03/08 10:59:19.38
>>373
再帰だよ(自分にもどる)

377:現代数学の系譜11 ガロア理論を読む
14/03/08 11:02:30.13
これなんか面白そうだな

URLリンク(sites.google.com)
立教大学数理物理学研究センター
これまでのセミナー (2013年度)

第1回(2013年5月01日 16:40-18:10)

講師: 江口徹 氏 [立教大学]
題目: 超弦理論とムーンシャイン現象
概要:
K3曲面は超弦理論のコンパクト化で基本的な役割を果たす事が知られているが,我々は最近その位相的不変量である楕円種数を調べて面白い事に気がついた。
K3曲面上の超弦理論は N=4 共形不変性を持つため楕円種数をN = 4 共形代数の指標で展開してその展開係数を調べると、これらがちょうどマシュー群M24と呼ばれる離散群の規約表現の次元の和に分解できる事が分かった。
これはモジュラーJ関数のq展開の係数がモンスター群の規約表現の和に分解されるいわゆるMonsterous Moonshine と呼ばれる現象に良く似ている。
このため我々の見つけた現象はMathieu moonshine と呼ばれるようになった。Monsterous moonshine は70年代後半に発見され10数年かけて数学者によって解決された。
Mathieu moonshine の現象はその起源や意味がまだ全く不明である。最近は拡張されて Umbral moonshine, Enriques moonshine なども見つかっている。このセミナーではこれらの新しい moonshine 現象を解説する。

378:現代数学の系譜11 ガロア理論を読む
14/03/08 20:17:08.17
>>376
補足

1.自分が書けってこと
2.もともと2ちゃんねるの存在自身、そんな専門的な場じゃない。素人の気楽なカキコ前提
3.脱線、スレチ、荒らし・・・なんでもありの玉石混淆が前提だ
4.このスレも例外ではない。自分の書きたいことを書け! おれも同じだよ!

379:現代数学の系譜11 ガロア理論を読む
14/03/08 21:48:00.56
ほい
URLリンク(www.kurims.kyoto-u.ac.jp)
望月新一 最新情報
2014年02月20日  ・(出張・講演)本日、数理研の数論セミナーで行なわれた講演のスライドを掲載。
URLリンク(www.kurims.kyoto-u.ac.jp)
出張・講演
[15] 宇宙際タイヒミューラー理論への誘(いざな)い 《3時間版》 (京都大学数理解析研究所 2014年02月) PDF
URLリンク(www.kurims.kyoto-u.ac.jp)(3jikanban).pdf

380:132人目の素数さん
14/03/08 22:31:48.75
自演アゲ

381:現代数学の系譜11 ガロア理論を読む
14/03/08 23:08:55.37
自演アゲか・・

しかし、自分としては、ここは天下のメモ帳よ
書けば自分の記憶に残るし、記録にも
なにより勉強になる
(間違ったことは書けない(間違えばさすがに突っ込みがあるだろう))
ここに書く意味はそういうことよ

君もそうしたらどうだ?

382:現代数学の系譜11 ガロア理論を読む
14/03/09 06:15:39.90
>>377
これ、よく纏まっている
URLリンク(ja.wikipedia.org)
モンストラス・ムーンシャイン

数学では、モンストラス・ムーンシャイン、もしくはムーシャイン理論は、1979年にジョン・コンウェイ(John Conway)とシモン・ノートン(英語版)(Simon Norton)により名づけられ、
モンスター群 M とモジュラー函数、特にj-不変量(j-invariant)との間の予期せぬ関係を記述することに使われた。
今では、背後にあるモンストラス・ムーンシャインが、対称性としてモンスター群を持つある共形場理論であることが知られている。
コンウェイとノートンによって考案された予想は、リチャード・ボーチャーズ(Richard Borcherds)により1992年に、弦理論や頂点作用素代数(英語版)(vertex operator algebra)の理論や一般化されたカッツ・ムーディ代数(英語版)から証明された。

目次

1 歴史
2 モンスター加群
3 ボーチャーズの証明
4 一般化されたムーンシャイン
5 量子重力との予想される関係
6 マチュームーンシャイン
7 何故「モンストラス・ムーンシャイン」なのか?
8 脚注
9 参考文献
10 外部リンク

383:現代数学の系譜11 ガロア理論を読む
14/03/09 06:24:19.10
英文だが
URLリンク(home.mathematik.uni-freiburg.de)
Mathieu moonshine

By classical results due to Nikulin, Mukai, Xiao and Kondo in the 1980's and 90's, the finite symplectic automorphism groups of K3 surfaces are always subgroups of the Mathieu group M24.
This is a simple sporadic group of order 244823040. However, also by results due to Mukai, each such automorphism group has at most 960 elements and thus is by orders of magnitude smaller than M24.
On the other hand, according to a recent observation by Eguchi, Ooguri and Tachikawa, the elliptic genus of K3 surfaces seems to contain a mysterious footprint of an action of the entire group M24:
If one decomposes the elliptic genus into irreducible characters of the N=4 superconformal algebra, which is natural in view of superconformal field theories (SCFTs) associated to K3,
then the coefficients of the so-called non-BPS characters coincide with the dimensions of representations of M24.

In joint work with Dr. Anne Taormina, first results of which are presented in
Anne Taormina, Katrin Wendland, The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24; JHEP 1308:152 (2013); arXiv:1107.3834 [hep-th]

we develop techniques which eventually should overcome the above-mentioned "order of magnitude problem":
For Kummer surfaces which carry the Kahler class that is induced by their underlying complex torus, we find methods that improve the classical techniques due to Mukai and Kondo,
and we give a construction that allows us to combine the finite symplectic symmetry groups of several Kummer surfaces to a larger group.
Thereby, we generate the so-called overarching finite symmetry group of Kummer surfaces, a group of order 40320, thus already mitigating the "order of magnitude problem".

URLリンク(www.maths.dur.ac.uk)
Mathieu Moonshine

384:現代数学の系譜11 ガロア理論を読む
14/03/09 07:36:37.31
>>372
これも、面白かった
URLリンク(www2.odn.ne.jp)
数理物理への誘い7―最新の動向をめぐって 河東泰之 編 
抜粋
第2話 数理物理学(繰り込み群)的視点からみたペレルマン理論 (伊東恵一)  
3 シグマ模型とその仲間たち
  3.1 スピン模型たちとその連続極限
  3.2 発散項と繰り込み
  3.3 繰り込み群方程式
4 Perelman 理論と物理学
  4.1 統計力学
  4.2 宇宙論
  4.3 最近の流れ
5 まとめ
 参考文献

第3話 リッチフローと4次元異種微分構造 (石田政司)  
2 4次元トポロジー,微分構造,リッチフロー
  2.1 4 次元微分ポアンカレ予想
  2.2 異種微分構造(エキゾチックな微分構造)
  2.3 ドナルドソン不変量とサイバーグ‐ウイッテン不変量
3 サイバーグ‐ウイッテン方程式と微分幾何学的不等式
  3.1 モノポール類
  3.2 微分幾何学的不等式
4 ペレルマン不変量と異種微分構造
  4.1 $\cal F$-汎関数,ペレルマン不変量,山辺不変量
  4.2 ペレルマン不変量の評価
  4.3 微分構造とペレルマン不変量の変化
5 異種微分構造と正規化リッチフローの非特異解
  5.1 正規化リッチフローから誘導される曲率の評価
  5.2 非特異解の存在に対する障害

385:現代数学の系譜11 ガロア理論を読む
14/03/09 08:45:21.12
こんなのがあった
URLリンク(ocw.u-tokyo.ac.jp)
学術俯瞰講義 数学を創る第12回 形の見分け方と数学の視点 坪井俊 東京大学20100114

386:現代数学の系譜11 ガロア理論を読む
14/03/09 09:50:30.46
>>384
4次元球は難しいみたい

URLリンク(en.wikipedia.org)
Exotic sphere
From Wikipedia, the free encyclopedia

4-dimensional exotic spheres and Gluck twists

In 4 dimensions it is not known whether there are any exotic smooth structures on the 4-sphere. The statement that they do not exist is known as the "smooth Poincare conjecture",
and is discussed by Michael Freedman, Robert Gompf, and Scott Morrison et al. (2010) who say that it is believed to be false.

Some candidates for exotic 4-spheres are given by Gluck twists (Gluck 1962). These are constructed by cutting out a tubular neighborhood of a 2-sphere S in S4 and gluing it back in using a diffeomorphism of its boundary S2×S1.
The result is always homeomorphic to S4. But in most cases it is unknown whether or not the result is diffeomorphic to S4. (If the 2-sphere is unknotted,
or given by spinning a knot in the 3-sphere, then the Gluck twist is known to be diffeomorphic to S4, but there are plenty of other ways to knot a 2-sphere in S4.)

Akbulut (2009) showed that a certain family of candidates for 4-dimensional exotic spheres constructed by Cappell and Shaneson are in fact standard.

387:現代数学の系譜11 ガロア理論を読む
14/03/09 10:03:47.40
関連

URLリンク(plus.maths.org)
Submitted by mf344 on January 12, 2011
Exotic spheres, or why 4-dimensional space is a crazy place
by Richard Elwes
抜粋
The weird world of four dimensions
So, is the smooth Poincare conjecture true? Most mathematicians lean towards the view that it is probably false, and that 4-dimensional exotic spheres are likely to exist.
The reason is that 4-dimensional space is already known to be a very weird place, where all sorts of surprising things happen.
A prime example is the discovery in 1983 of a completely new type of shape in 4-dimensions, one which is completely unsmoothable.

As discussed above, a square is not a smooth shape because of its sharp corners. But it can be smoothed. That is to say, it is topologically identical to a shape which is smooth, namely the circle.
In 1983, however, Simon Donaldson discovered a new class of 4-dimensional manifolds which are unsmoothable: they are so full of essential kinks and sharp edges that there is no way of ironing them all out.

Beyond this, it is not only spheres which come in exotic versions. It is now known that 4-dimensional space itself (or R4) comes in a variety of flavours.
There is the usual flat space, but alongside it are the exotic R4s. Each of these is topologically identical to ordinary space, but not differentially so. Amazingly, as Clifford Taubes showed in 1987,
there are actually infinitely many of these alternative realities. In this respect, the fourth dimension really is an infinitely stranger place than every other domain: for all other dimensions n,
there is only ever one version of Rn. Perhaps after all, the fourth dimension is the right mathematical setting for the weird worlds of science fiction writers' imaginations.

388:現代数学の系譜11 ガロア理論を読む
14/03/09 10:30:41.09
>>379
補足

P5,6辺りのお金の貸し借りの例えとか
代数の不定元の導入の例えとか
工夫が見られる

389:現代数学の系譜11 ガロア理論を読む
14/03/09 22:28:44.77
こんなのが
URLリンク(www.geocities.jp)
Ikuro's Home Page

648.2つのポアンカレ予想(その1) (13/06/06)
649.2つのポアンカレ予想(その2) (13/06/06)
650.2つのポアンカレ予想(その3) (13/06/06)
651.2つのポアンカレ予想(その4) (13/06/06)

390:現代数学の系譜11 ガロア理論を読む
14/03/10 19:57:26.77
これ買った
面白かった
受験生その他のために

URLリンク(www.amazon.co.jp)
学年ビリのギャルが1年で偏差値を40上げて慶應大学に現役合格した話 [単行本(ソフトカバー)]坪田信貴 (著) 発売日: 2013/12/26

内容紹介
一人の教師との出会いが、金髪ギャルとその家族の運命を変えた―
投稿サイトSTORYS.JPで60万人が感動した、笑いと涙の実話を全面書き下ろしで、完全版として書籍化。
子どもや部下を伸ばしたい親御さんや管理職に役立つノウハウも満載。

「ダメな人間なんて、いないんです。ただ、ダメな指導者が、いるだけなんです」

「子どもにとって、受験より大事なのは、絶対無理って思えることを、やり遂げたっていう経験なんです」

子どもや部下を急激に伸ばせる心理学テクニック&学習メソッド等も満載。

〈主な登場人物〉
【さやかちゃん】偏差値30のギャル。天然ボケ回答連発も、へらず口が得意。校則違反はするが正義感は強い。
【坪田先生(僕)】心理学等を使って、多くの生徒の短期間での偏差値上昇(20~40上昇)を請け負うカリスマ塾講師。
【ああちゃん】悲しい子ども時代の経験から、熱い子育て論を持つお母さん。一風変わった子育て法に世間の風当たりは強い
内容(「BOOK」データベースより)
一人の教師との出会いが、金髪ギャルとその家族の運命を変えた―投稿サイトSTORYS.JPで60万人が感動した、笑いと涙の実話を全面書き下ろしで、完全版として書籍化。子どもや部下を伸ばしたい親御さんや管理職に役立つノウハウも満載。

391:現代数学の系譜11 ガロア理論を読む
14/03/10 22:25:31.40
この記事面白いね

URLリンク(d.hatena.ne.jp)
2013-05-19 エキゾチックな球面 ryamada2013-05-19
■[微分幾何][トポロジー][四元数][クオータニオン][R][onion]多次元球のいろいろな張り合わせ

多次元視覚のことをやっている(こちら)
そうすると、視覚で取った情報から各点の微分に関する情報を取り出して、それによって対象を理解しようか、という話になる
じゃあ、ということで多様体上の微分のことが気になるのだが、そこには「球は球でも微分の状態が違うことがある」という話題がある
エキゾチックな球面という話である(こちら)
多次元球面ならどんなものでもエキゾチックな球面があるかというとそうでもないらしい
歴史的に最初に登場した7次元球面の話でこれをなぞってみることにする(7次元のエキゾチック球面)

今、四元数の性質から、q(x),q(y)のハミルトニアン積q(x)q(y)もやはり四元数でそのノルムが1だから
上半分の(x,y)と下半分の(x,y’)(ただしy’はハミルトニアン積(q(x)q(y)の4成分の係数が作る長さ4のベクトルとする)が1対1対応付けできる
(その貼りあわせも素直な対応関係だから微分可能で、そうすると、微分の仕方の違う球面ができる、という話)
Rでやってみよう。Rには四元数・八元数をハンドリングするonionパッケージがある(ハミルトニアン積の関数がどれだか分らなかったのであまりメリットを得ていないのだが…)
適当に回転させてその軌道が貼り合わせによって変わることをみる

392:132人目の素数さん
14/03/11 02:09:30.13
「学年ビリのギャルが1年で偏差値を40上げてSGAを読んだ話」はないのかな

393:現代数学の系譜11 ガロア理論を読む
14/03/11 08:24:31.99
SGAを読むには、数学偏差値88必要だからね・・
その話はないね

ただし、「1年で偏差値が60から80近くまで上がり東大へ行った子」の話はP295>390
「偏差値が40ぐらいから医学部へ行ったある男子」の話はP297
にある

394:現代数学の系譜11 ガロア理論を読む
14/03/16 05:48:59.01
>>391
補足
下記がよくまとまっている
URLリンク(en.wikipedia.org)

External links

Exotic sphere home page on the home page of Andrew Ranicki. Assorted source material relating to exotic spheres. URLリンク(www.maths.ed.ac.uk)

URLリンク(www.maths.ed.ac.uk)
Exotic spheres
An exotic sphere is an n-dimensional differentiable manifold which is homeomorphic but not diffeomorphic to the standard n-sphere Sn.
The articles on exotic spheres on the Wikipedia and the Manifold Atlas Project.
On manifolds homeomorphic to the 7-sphere, by J.Milnor, Ann. of Math. (2) 64, 399--405 (1956) URLリンク(www.maths.ed.ac.uk)
Hedrick Lectures on Differential Topology by J. Milnor (1965)

The structure set by A.Ranicki, Chapter 13 of Algebraic and Geometric Surgery, Oxford (2002)
Exotic spheres and curvature by M.Joachim and D.J.Wraith, Bull. A.M.S. 45, 595--616 (2008)
A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications. by C.Duran and T.Puttmann, Michigan Math. J. 56, 419--451 (2008)
On the work of Michel Kervaire in surgery and knot theory by A.Ranicki, Slides of lecture given at Kervaire memorial symposium, Geneva, 10-12 February, 2009.
Addendum Exotic spheres and the Kervaire invariant (8 May 2009)
An introduction to exotic spheres and singularities by A.Ranicki, Slides of lecture given in Edinburgh, 4 May 2012
Dusa McDuff and Jack Milnor (Somewhere in Scotland, 2011)

395:現代数学の系譜11 ガロア理論を読む
14/03/16 06:19:29.87
>>394
これもよくまとまっている

URLリンク(en.wikipedia.org)

396:現代数学の系譜11 ガロア理論を読む
14/03/16 09:04:14.20
>>391

数学者の野口 廣さんと野口 宏さん は同じ方なんですね
URLリンク(oshiete.goo.ne.jp)
野口廣】の人気Q&Aランキング
はてなブックマークに追加
1位 数学者の野口さんについて
数学というより国語力の問題なのかもしれませんが、 数学者の野口 廣さんと野口 広さんと野口 宏さん は同じ方なんですか? トポロジーとか、昔だと位相空間とかいう本を 書かれていた方です。

397:現代数学の系譜11 ガロア理論を読む
14/03/16 09:37:36.70
>>390
本の方が絶対面白い

URLリンク(storys.jp)
学年でビリだったギャルが、1年で偏差値を40あげて日本でトップの私立大学、慶應大学に現役で合格した話

398:現代数学の系譜11 ガロア理論を読む
14/03/16 10:47:13.65
>>397 この話も面白いね
URLリンク(storys.jp)
【パート3】伊達政宗をいたちせいしゅうと読み、定期テストで0点を取っていた美少女が(略)
2つの後悔
そんな僕が、これまでの講師人生で後悔している事が2つある。一つが、Y君に対して言ってしまった一言。
「君さ、カンニングをしても、大学には合格しないんだ。だから、ちゃんとカンニングせずに受けよう」
この子は、高3スタート時の偏差値が30前後の子だった。そして、基礎の学習をずーっと行って、12月頃にやっと過去問を受けた。すると、一回目の過去問でいきなり80%をとったのだ。

Y君は、「ちょ、ちょっと待って!カンニングなんかしていない」と一瞬驚きながら主張したけど、途中から黙ってしまった。
それから、2回3回と過去問の結果を持ってきたのだけれど、どんどん点数が伸びて行った。僕は、塾内の教務会議にかけて、「彼がカンニングしている現場を押さえるしかない」と主張した。

合格発表日、Y君は塾に来て、まっさきに僕の机の前に来た。
「先生、俺さ、最初に過去問やった時にめっちゃ手応えがあって、超嬉しかった。で、先生が採点してくれた時に呼ばれて、先生が険しい顔してるから、悪かったのか と思ったら、80%ってのが見えてさ
もうまじで、先生のおかげだと思って。こんなに伸びるとは思わなかったって、本当に叫びたくて、先生いつも励ましてくれてたしさ、すごく説明も適確だし、俺の苦手な事とかも把握して、全部調整してくれたし、親が批判してきた時もかばってくれて
なのに、その一番一緒に喜んでくれると思ってた人が、カンニングっていったんだぜ? まじで衝撃だったんだけど」

「もっといい点数を次にとったら認めてくれるかなって、だから頑張った。そしたらますます疑われた。絶対合格して、先生に合格通知叩き付けて、謝ってもらおうって決めたんだ。だから謝って!」
僕は、真摯に謝りました。涙が出ました。

「ありがとう。俺さ、結局、先生のおかげで、誰もが無理っていってたのに受かったの。でもさ、最後の最後に、自分が自分でやった事、疑ってどうすんの?先生もまだまだ甘いね!」そうやって、Y君は大きな笑顔を見せてくれました。
僕にとって、講師生活1年目の最後で、本当に生徒から教えてもらった瞬間でした。生徒の事を信じなくて教育って言えるのかって。

399:132人目の素数さん
14/03/16 11:16:50.99
金ないのに
なんで慶応なのかね?

400:現代数学の系譜11 ガロア理論を読む
14/03/16 11:24:11.60
金はあるみたい
1.中高一貫の女子校に行かせたんだし
2.父親は脱サラで事業を始めて、最初苦労したけど軌道に乗れば大丈夫
3.両親の仲が悪く、母親は金がないが、慶応合格したら父親が金(学資と東京の生活費など)を出したらしい
4.さらに、今回の話にはないが、ばつぐんに出来れば、奨学金という手もあるだろうし・・

401:現代数学の系譜11 ガロア理論を読む
14/03/16 11:26:13.31
>>398

>「ありがとう。俺さ、結局、先生のおかげで、誰もが無理っていってたのに受かったの。でもさ、最後の最後に、自分が自分でやった事、疑ってどうすんの?先生もまだまだ甘いね!」そうやって、Y君は大きな笑顔を見せてくれました。
>僕にとって、講師生活1年目の最後で、本当に生徒から教えてもらった瞬間でした。生徒の事を信じなくて教育って言えるのかって。

人間って潜在能力あるんだな・・

402:132人目の素数さん
14/03/16 12:47:35.15
>>390
坪田信貴さんという人の経歴どこかに出てきてたっけ?
どこの大学を出たんだろう?

403:現代数学の系譜11 ガロア理論を読む
14/03/21 06:49:25.99
>>402
詳しい経歴はないですね
URLリンク(profile.ameba.jp)
青藍義塾 塾長 坪田信貴のプロフィール|Ameba (アメーバ)

404:現代数学の系譜11 ガロア理論を読む
14/03/21 07:00:34.20
>>386
しばらく、Exotic sphere 4次元微分ポアンカレ予想にはまっていた

>The statement that they do not exist is known as the "smooth Poincare conjecture", and is discussed by Michael Freedman, Robert Gompf, and Scott Morrison et al. (2010) who say that it is believed to be false.

URLリンク(arxiv.org)
Freedman, Michael; Gompf, Robert; Morrison, Scott; Walker, Kevin (2010), "Man and machine thinking about the smooth 4-dimensional Poincare conjecture", Quantum Topology 1 (2): 171?208, arXiv:0906.5177

面白かった
Freedmanは、マイクロソフトに移っていたんだ
URLリンク(ja.wikipedia.org)

で、コンピュータパワーで、結び目理論で計算したらしい
5.3 Results
Computing the two-variable polynomial for K2 took approximately 4 weeks on a
dual core AMD Opteron 285 with 32 gb of RAM. At this point, we haven’t been
able to do the calculation for K3 . With the current version of the program, after
about two weeks the program runs out of memory and aborts.

と書いてあって、計算は完了しなかったと

405:現代数学の系譜11 ガロア理論を読む
14/03/21 07:08:13.82
>>404
>abort
URLリンク(e-words.jp)
アボート 【 abort 】
中止(する)、中断(する)、打ち切る、打ち切り、などの意味を持つ英単語。
実行中のプログラムに異常が発生した際などに、OSやユーザが強制的に処理を打ち切って終了すること。強制終了。
また、通信中に異常が生じて正常な通信を続行するのが不可能になった場合に、接続を強制的に打ち切ること。強制切断。
(引用おわり)

>dual core AMD Opteron 285 with 32 gb of RAM

いまならスパコン使うとかすれば、the calculation for K3 は完了させられると思うのだが・・

406:現代数学の系譜11 ガロア理論を読む
14/03/21 08:02:45.22
>>405

URLリンク(ja.wikipedia.org)
リーマン球面←→R2 (無限遠点を一点追加)

なので、同じことを5次元リーマン球面(S4)←→R4 (無限遠点を一点追加)
だから、R4にエキゾチックなものが存在するなら、S4にもと思ったけれど

そう単純ではないみたい
それなら、S7にエキゾチックなものが存在するなら、R7にもエキゾチックなものが存在しなければならないわけで、そうはなっていない

Exotic sphere 4次元微分ポアンカレ予想というのは、我々が日常住んでいる空間R3+時間T1の世界の理解を深める上で結構重要なのではないかと
そう思えてきました (以前は些末な問題かなと思っていたけれど)

407:現代数学の系譜11 ガロア理論を読む
14/03/21 20:17:25.11
今年のノーベル物理学賞は、これで決まりかな

URLリンク(blog.goo.ne.jp)
とね日記
昨夜の発表の感想: 宇宙誕生時の「重力波」観測 米チームが世界初
2014年03月18日 12時55分17秒 | 物理学、数学

URLリンク(planck.exblog.jp)
2014年 03月 18日
原始の重力波 その2 (大栗博司のブログ)

408:132人目の素数さん
14/03/21 20:51:22.08
royalty free music
you can use it for free. and
you can put it your own video
and monetize on youtube
URLリンク(www.youtube.com)

409:現代数学の系譜11 ガロア理論を読む
14/03/21 23:02:44.49
>>407
NHKでは、佐藤 勝彦がノーベル賞候補みたくよいしょしているが、下記を読むとちょっと甘いように思う
うまくアピールしないと厳しいだろう

URLリンク(en.wikipedia.org)
Inflation (cosmology)

Early inflationary models
Inflation was proposed in January 1980, by Alan Guth as a mechanism for resolving these problems.[41][42]
At the same time, Starobinsky argued that quantum corrections to gravity would replace the initial singularity of the universe with an exponentially expanding deSitter phase.[43]
In October 1980, Demosthenes Kazanas suggested that exponential expansion could eliminate the particle horizon and perhaps solve the horizon problem,[44]
while Sato suggested that an exponential expansion could eliminate domain walls (another kind of exotic relic).[45]
In 1981 Einhorn and Sato[46] published a model similar to Guth's and showed that it would resolve the puzzle of the magnetic monopole abundance in Grand Unified Theories.

URLリンク(ja.wikipedia.org)
佐藤 勝彦(さとう かつひこ、1945年8月30日 - )は、日本の宇宙物理学者。専門は、宇宙論。インフレーション宇宙論の提唱者として知られる。

1981年にアラン・ハーヴェイ・グースとほぼ同時期に、インフレーション宇宙論を提唱した。
この理論の最初の論文投稿者は佐藤であるが[4][5]、グースは1980年1月に佐藤と同様のインフレーションモデルをスタンフォード大学のセミナーで発表している[6]。
また、Alexei Starobinskyも1979年に同様のモデルについてのアイデアを示し[7]、1980年に論文を発表している[8]。なお、“インフレーション”という言葉を最初に用いたのはグースである[5]。
(注:佐藤の論文は、”Recieved 1980 September 9;in original form 1980 February 21”、Alan Guthは”Recieved 11 August 1980”)

410:132人目の素数さん
14/03/21 23:28:09.47
砂糖勝彦がインフレの提唱者って言ってるの日本人だけだがや
大栗も一生懸命アピールしてるけど日本語ブログでwww
ノーベルは砂糖は間違ってもない残念

411:132人目の素数さん
14/03/22 02:17:23.53
あほやなあ
インフレは幾通りもの派生があるんやで~
観測事実に一番合うやつがもらうに決まっとろうが

412:現代数学の系譜11 ガロア理論を読む
14/03/22 20:30:20.83
>>410
うーん、うまくアピールしないと、危ないだろうね
論文の投稿は、かなり早かったし、そこをアピールするしかない、いろいろな日本人が・・

>>411
>観測事実に一番合うやつがもらうに決まっとろうが

うん
独創性+ブレークスルーが重視される気がする
”観測事実に一番合う”が、些末なチューニング(ブレークスルーの後のだれでもやれる仕事)と見なされると、最初の提唱者が受賞だろう

田中耕一さんのノーベル賞が、そうだった
URLリンク(ja.wikipedia.org)
ノーベル賞受賞について

現在、生命科学分野で広く利用されている「MALDI-TOF MS」は、田中らの発表とほぼ同時期にドイツ人化学者 (Hillenkamp、Karas) により発表された方法である。
MALDI-TOF MS は、低分子化合物をマトリックスとして用いる点が田中らの方法と異なるが、より高感度にタンパク質を解析することができる。

413:現代数学の系譜11 ガロア理論を読む
14/03/29 05:50:52.37
来週は4月に突入
新年度がはじまる

今週末は桜が開花するところも多いだろう
新しくこのスレに来る人もいるんだろうな

ガロア理論の話は、過去ログにある
人それぞれのガロア理論の理解の仕方があって良いと思うんだよね

「切り口」という言葉がよく使われる。複雑な対象については、「切り口」を意図的に変えて複数の「切り口」で見る。これを意識して行う
(参考) URLリンク(diamond.jp) 「ものの見方」を変える8つの切り口 【第7回】 2012年1月17日 川村透 [川村透事務所代表・「ものの見方」コンサルタント]

ガロア理論も同じ
「切り口」を意識的に変えて複数の「切り口」で見る。これを意図して行うのが良いと思うよ

414:現代数学の系譜11 ガロア理論を読む
14/03/29 07:03:52.95
坪井俊先生>>371>>385
URLリンク(kyokan.ms.u-tokyo.ac.jp)
ここから
URLリンク(faculty.ms.u-tokyo.ac.jp)
Encounter with Mathematics
URLリンク(www.math.chuo-u.ac.jp)

415:現代数学の系譜11 ガロア理論を読む
14/03/30 23:22:13.27
K3曲面って面白いね
URLリンク(ja.wikipedia.org)
K3曲面は、複素トーラスとともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。
Andre Weil (1958) は、これらに 3人の代数幾何学者の名前、エルンスト・クンマー(Ernst Kummer)、エーリッヒ・ケーラー(英語版)(Erich Kahler)、小平邦彦(Kunihiko Kodaira)にちなむと同時に、
(当時は未踏の山であった)カシミールの山であるK2にちなみK3曲面と名付けた。
“ Dans la seconde partie de mon rapport, il s'agit des varietes kahleriennes dites K3, ainsi nommees en l'honneur de Kummer, Kahler, Kodaira et de la belle montagne K2 au Cachemire ”
?Andre Weil (1958, p.546)の「K3曲面」という名前の理由について引用

定義
K3曲面を特徴づけることに使うことのできる多くの同値な性質がある。
完備で滑らかな自明な標準バンドルを持つ曲面は、K3曲面と複素トーラス(もしくはアーベル多様体)であるので、K3曲面を定義するために複素トーラスを場外する条件を入れることができる。曲面が単純連結であるという条件が良く使われる。

定義にはいくつかの変形があり、射影曲面に限定したり、デュヴァル特異点(英語版)(Du Val singularities)[1]を持つことを許す定義もある。

弦双対性との関係

K3曲面は、弦双対性(英語版)のほとんどの箇所に現れ、重要なツールを提供する。弦のコンパクト化(英語版)に対して、K3曲面は、自明な空間ではないが、詳細な性質のほぼ全部を解明できる空間である。
タイプ IIA 弦、タイプ IIB 弦、E8×E8 ヘテロ弦、Spin(32)/Z2 ヘテロ弦、及び M-理論は、K3曲面上のコンパクト化により関連付けらることができる。
例えば、K3曲面上へコンパクト化されたタイプ IIA 弦は、4-トーラス上へコンパクト化されたヘテロ弦に等価である。Aspinwall (1996)

416:132人目の素数さん
14/03/31 07:53:41.01
下手すると重力波に関してはグースさんにノーベル賞
を与えるかどうか不明?

417:132人目の素数さん
14/04/01 00:02:14.03
>>404
たしかフィールズ受賞者で初めて民間で働いた人だと思う
MSRはMSからあれやこれや指図されるのが少なくてかなりいい環境らしい
Tex作った人もここにいたはず

418:132人目の素数さん
14/04/01 23:20:27.33
ガロア理論は数学ガール→代数と数論の基礎→代数方程式とガロア理論で勉強したけどこのスレのオススメは何だろ

419:132人目の素数さん
14/04/02 12:32:16.65


420:現代数学の系譜11 ガロア理論を読む
14/04/04 20:55:08.96
>>416
個人見解だが、ノーベル物理学賞3人として、宇宙のインフレーション理論関連の賞として、その中には入りそう

421:現代数学の系譜11 ガロア理論を読む
14/04/04 21:32:16.38
>>417
>Tex作った人もここにいたはず

クヌースさんね
だが、MSRの話は書かれていないし(他でも読んだことも聞いたこともないし)
だれかと勘違いだろう

URLリンク(ja.wikipedia.org)
ドナルド・エルビン・クヌース[1](Donald Ervin Knuth, 1938年1月10日 -)は数学者、計算機科学者。スタンフォード大学名誉教授[2]。

クヌースによるアルゴリズムに関する著作 The Art of Computer Programming のシリーズはプログラミングに携わるものの間ではあまりにも有名[3]。
アルゴリズム解析と呼ばれる分野を開拓し、計算理論の発展に多大な貢献をしている。その過程で漸近記法で計算量を表すことを一般化させた。

理論計算機科学への貢献とは別に、コンピュータによる組版システム TeX とフォント設計システム METAFONT の開発者でもあり、Computer Modern という書体ファミリも開発した。

URLリンク(en.wikipedia.org) 英語版

422:現代数学の系譜11 ガロア理論を読む
14/04/04 21:41:21.44
>>417
>MSR

具体的な個人名が記されていないね
URLリンク(en.wikipedia.org)
The research division of Microsoft was created in 1991 and employs computer scientists, physicists, engineers, and mathematicians, including Turing Award winners, Fields Medal winners, MacArthur Fellows, and Dijkstra Prize winners.
These 1,100 scientists and engineers collaborate with academic, government, and industry researchers to advance the state of the art of computing, and solve difficult world problems through technological innovation.

えーと日本語版には少しあるね
URLリンク(ja.wikipedia.org)
マイクロソフトリサーチ(Microsoft Research、MSR)は、計算機科学に関するさまざまな研究を行う機関。リチャード・ラシッド博士がマイクロソフトに入社する条件として、同研究所の設立と、その独立性を約束させ、1991年9月に設立された。

名称からもわかるようにマイクロソフトの関連機関ではあるが、完全に独立した研究機関であり、そこで行われる研究内容については、たとえマイクロソフト本社の首脳陣であっても一切の口出しは出来ないことになっている。

世界でも最も有力な研究機関の一つである。
現在、チューリング賞受賞者のアントニー・ホーア、
フィールズ賞受賞者のマイケル・フリードマン、
ウルフ賞受賞者のLaszlo Lovasz、
MacArthur Fellowship受賞者のJim Blinn(ジム・ブリン)、
Dijkstra Prize受賞者のレスリー・ランポートらをはじめ、著名な物理学・計算機科学・数学の専門家たちが数多く参加している。

423:現代数学の系譜11 ガロア理論を読む
14/04/04 21:43:45.81
>>418
その人の立場と年齢で違うと思うけど
ただ、”ガロア理論は数学ガール→代数と数論の基礎→代数方程式とガロア理論で勉強した”から推察すると、大学生と見た

個人的には、物理と数学の境界が面白いと思うけど

424:現代数学の系譜11 ガロア理論を読む
14/04/05 08:31:39.68
検索ヒット

URLリンク(en.wikipedia.org)
The Banff International Research Station (BIRS) for Mathematical Innovation and Discovery was established in 2003.[1]
It provides an independent research institute for the mathematical sciences in North America, a counterpart to the Mathematical Research Institute of Oberwolfach in Europe.[2]
The research station, commonly known by its acronym, "BIRS", hosts over 2000 international scientists each year to undertake research collaboration in the mathematical sciences.[3]

URLリンク(www.birs.ca)
Reports from Workshops in 2013

URLリンク(www.birs.ca)
13w5032: Applications of Iwasawa Algebras
Mar 03 - Mar 08

425:現代数学の系譜11 ガロア理論を読む
14/04/05 20:08:16.22
>>391

7次元は結構特殊なんだ・・
URLリンク(en.wikipedia.org)
Seven-dimensional space

In physics and mathematics, a sequence of n numbers can also be understood as a location in n-dimensional space. When n = 7,
the set of all such locations is called 7-dimensional Euclidean space. Seven-dimensional elliptical and hyperbolic spaces are also studied, with constant positive and negative curvature.

Abstract seven-dimensional space occurs frequently in mathematics, and is a perfectly legitimate construct.
Whether or not the real universe in which we live is somehow seven-dimensional (or indeed higher) is a topic that is debated and explored in several branches of physics, including astrophysics and particle physics, but it does not matter for mathematics.

Formally, seven-dimensional Euclidean space is generated by considering all real 7-tuples as 7-vectors in this space. As such it has the properties of all Euclidian spaces, so it is linear, has a metric and a full set of vector operations.
In particular the dot product between two 7-vectors is readily defined, and can be used to calculate the metric. 7 × 7 matrices can be used to describe transformations such as rotations which keep the origin fixed.

A distinctive property is that a cross product can be defined only in three or seven dimensions (see seven-dimensional cross product). This is due to the existence of quaternions and octonions.

426:現代数学の系譜11 ガロア理論を読む
14/04/05 20:16:57.56
>>425
補足
Octonion=8元数
これが結構応用があるという
URLリンク(en.wikipedia.org)
In mathematics, the octonions are a normed division algebra over the real numbers, usually represented by the capital letter O, using boldface O or blackboard bold \mathbb O.
There are only four such algebras, the other three being the real numbers R, the complex numbers C, and the quaternions H.
The octonions are the largest such algebra, with eight dimensions, double the number of the quaternions from which they are an extension.
They are noncommutative and nonassociative, but satisfy a weaker form of associativity, namely they are alternative.

Octonions are not as well known as the quaternions and complex numbers, which are much more widely studied and used.
Despite this, they have some interesting properties and are related to a number of exceptional structures in mathematics, among them the exceptional Lie groups.
Additionally, octonions have applications in fields such as string theory, special relativity, and quantum logic.

The octonions were invented in 1843 by John T. Graves, inspired by his friend William Hamilton's discovery of quaternions. Graves called his discovery octaves.
They were discovered independently by Arthur Cayley[1] and are sometimes referred to as Cayley numbers or the Cayley algebra.

427:現代数学の系譜11 ガロア理論を読む
14/04/05 20:27:12.59
補足
URLリンク(iopscience.iop.org)
Octonions, E6, and particle physics CA Manogue 2010 IOPscience

428:現代数学の系譜11 ガロア理論を読む
14/04/05 20:35:32.58
補足

URLリンク(math.ucr.edu)
The Octonions John C. Baez

Abstract:
The octonions are the largest of the four normed division algebras. While somewhat neglected due to their nonassociativity, they stand at the crossroads of many interesting fields of mathematics.
Here we describe them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
We also touch upon their applications in quantum logic, special relativity and supersymmetry.

URLリンク(math.ucr.edu)
The strangest numbers in string theory.

429:現代数学の系譜11 ガロア理論を読む
14/04/06 08:13:59.97
>>423
補足

自分が面白いと思うことを勉強するのが良いだろう
究極それにつきる

430:現代数学の系譜11 ガロア理論を読む
14/04/06 08:14:41.83
まあ、やっているうちに面白いと思えるようになることもある

431:132人目の素数さん
14/04/06 08:37:44.92
わからないから面白い
わからないけど面白い

こういうのも大学数学の壁かねぇ

432:現代数学の系譜11 ガロア理論を読む
14/04/06 08:38:03.91
>>406
>Exotic sphere 4次元微分ポアンカレ予想というのは、我々が日常住んでいる空間R3+時間T1の世界の理解を深める上で結構重要なのではないかと
>そう思えてきました (以前は些末な問題かなと思っていたけれど)

補足
我々が住んでいる空間R3+時間T1(虚数)の世界:R4に同相ということは同意されると思うけど・・、しかし大域的にブラックホールを許容すると、R4で同相と言えないかも・・
そして、量子論:原子や電子のサイズへ行くとそこは確率の世界で、果たして局所的にR4に微分や他の性質も含め同相なのか?

さて、ホットな話題の「宇宙誕生時の「重力波」観測 米チームが世界初」>>407
宇宙には始まりがあって、本当に微小な時代があったという。それが、インフレーション宇宙論>>409で、137億年後のいまがある
皆さんの身体は、平均的には身長160-170cmだろう。だが、インフレーション宇宙論の時間を逆に辿ると、いま身長160-170cmの空間は電子より微小な空間だったと
(137億年後のいまの広大な宇宙全体が昔は電子より微小な空間だったとすると、宇宙全体から比べれば微細な160-170cmの空間はどれだけ小さかったのだろうか)

インフレーション宇宙論を深めていこうとすると、超ひも理論 URLリンク(ja.wikipedia.org)
超ひも理論を深めるには、結局数学を総動員するしかない(というか新しい数学が作られて行く・・)

433:現代数学の系譜11 ガロア理論を読む
14/04/06 08:49:08.41
>>431
どもです

>こういうのも大学数学の壁かねぇ

そうですね
分かってしまえば「なんだ、そうだったのか」となるけど、「すとんと胸に落ちる」というか自分なりに「分かった」というレベルに到達できるかだ
山登りに似ている
高くまで上って、振り返ってみれば、自分の上ってきた道が見えて「そうだったのか」ということになる場合が多いだろう

数学の証明を読んで、一つ一つのステップを上ることも大事だが(これで数学という人が多いが違うと思う)
振り返ってみて、自分の上ってきた道を見て「そうだったのか」と思うところまでやって、初めて勉強が完結すると思う

山登り:地図を見て全体像を頭に入れて行く方が良い
というか、地図を見ないで行くと疲れるよ
勉強へのアドバイス

434:132人目の素数さん
14/04/06 09:11:24.21
中学2年ぐらいで証明という概念が初等幾何をメインに導入されるがあそこで数学を諦める人は相当多いだろうなぁ
もしくは諦めはしないが、苦手意識を持つという人も多い

で、高校数学を乗り越えて、大学数学にたどり着くと証明の嵐
ここも数学を道具として使う分野だとあまりやらないかもしれないが数学科だと避けられない

証明こそが数学だと思い知ることになるけどここでつまずく人が多数派だろう
でも証明や論理展開が好きになる人もいる
ここ見てる人は大半がこのパターンだろうがw

証明わからなかったら定義だけはしっかり確認しようというのが自分自身への戒め

435:現代数学の系譜11 ガロア理論を読む
14/04/06 09:15:31.59
>>432
補足

>個人的には、物理と数学の境界が面白いと思うけど

物理の概念が数学に影響を与えている例が多い

ホットな話題としては、AdS/CFT対応 URLリンク(ja.wikipedia.org)
古いが、マキシム・コンツェビッチ (1998年のICM(Berlin, German)でフィールズ賞を受賞) URLリンク(ja.wikipedia.org)
(3次元)ポアンカレ予想(証明には熱量・エントロピーなどの物理的な用語が登場する) URLリンク(ja.wikipedia.org)
サイモン・ドナルドソン(異種微分構造が存在することを、Yang-Millsゲージ理論を用いて示し1986年にフィールズ賞を受賞) URLリンク(ja.wikipedia.org)

などなど
おっと大御所のウィッテン(フィールズ賞を1990年に受賞) URLリンク(ja.wikipedia.org)
も。あと
ヴォーン・ジョーンズ URLリンク(ja.wikipedia.org)
1990年フィールズ賞受賞。専門は、フォン・ノイマン環、数理物理学、低次元位相幾何学、代数解析学の研究。
1983年に作用素環論にJonesの指数理論を導入した。 この理論は分類理論において新視点を提供し、量子Galois理論とでも呼べるものを準備した。
さらにジョーンズ多項式を発見し、作用素環論と無関係とも思えるトポロジーとの密接な関係を示した。 ジョーンズ多項式はその後エドワード・ウィッテンによって一般の3次元多様体の不変量(Jones-Witten不変量)に拡張され、場の量子論などに応用された。
1972年 - オークランド大学で理学士を取得
1973年 - オークランド大学で理学修士号(数学専攻)を取得
1974年 - スイス政府奨学生としてスイスジュネーヴ大学物理学科へ留学

436:132人目の素数さん
14/04/06 09:19:29.28
俺はガロア理論勉強したら次にどういう分野に進んだらいいのか知りたい

437:現代数学の系譜11 ガロア理論を読む
14/04/06 09:37:07.90
>>434
>中学2年ぐらいで証明という概念が初等幾何をメインに導入されるがあそこで数学を諦める人は相当多いだろうなぁ

ああ、そうなんか。初等幾何で数学が好きになったという人も多い
古くは小平邦彦 URLリンク(ja.wikipedia.org)
URLリンク(detail.chiebukuro.yahoo.co.jp) 小平邦彦先生の著書「幾何への誘い」と「幾何のおもしろさ」2013/9/22
いずれの本も平面幾何(初等幾何)をトピックとした本であることは間違いなく、
当時の初等教育に抽象論を取り入れる動きがあった数学教育会に反対する小平邦彦先生が、平面幾何の「おもしろさ」や重要性を示唆するために書いた本であると思います(この辺りの事情については小平先生の「怠け数学者の記」に詳しいです)。

米沢富美子氏 スレリンク(math板) 再録―5歳で幾何の証明理解(私の履歴書)母子とも雷に打たれた衝撃
その瞬間のことは、今でも鮮明に思い出せる。
1944年初秋、私は5歳の幼稚園児だった。縁側で紙を何枚も広げてお絵かきに夢中になっている。傍らで縫い物をしていた母がついと手を伸ばして紙に三角形を描き、「三角形の内角の和は2直角」と口ずさみながら、証明法を図解してくれた。
2直角とは直角を2つ合わせた角度、つまり180度だ。
(略)
 絵を描く幼子の私を目の前にして、三角形や線を描いて幾何の証明に取り組んだ日々がよみがえり、思わず手が伸びたのだろう。
 その時、母は話しかけている相手に内容を伝えようという気持ちはまるでなかった。母にとって意外だったのは、5歳の私が母の言葉を全部理解してしまったことだ。
証明に必要なのは、平行線、同位角、対頂角の概念だけで、絵解きにすれば幼稚園児でも理解できた。
 「こんなに面白いものが世の中にあるのか!」
 雷に打たれたような衝撃で体が震え、「もっと教えて」「もっと、もっと」とせがんだ。私の人生には、おもちゃも色紙(いろがみ)ももういらない。幾何があれば暮らしていける。そう思った。
 実はこのとき雷に打たれたのは私だけではなかった。幾何の証明を理解する私の姿に、母の体にも電気が走ったという。「これで後継ぎができた」と母の心も震えた。それを話してくれたのは、それから60年後のことなのだが。

438:132人目の素数さん
14/04/06 09:41:17.80
>>437
初等幾何で数学を好きになった人も多いという例で数学者を挙げるのはどうかな…
証明苦手というのはもっと普通の人の話だし

439:現代数学の系譜11 ガロア理論を読む
14/04/06 09:47:11.26
>>436
ども
>>418と同一人物と見た
回答は>>423>>429-430>>435>>435の訂正 >>432>→>423)にした
が、再度聞くということは
おぬし迷っているね

440:現代数学の系譜11 ガロア理論を読む
14/04/06 10:05:30.97
>>438
ども。>>436と同一人物ですね(この板はIDが出ないのが不便だな)

>初等幾何で数学を好きになった人も多いという例で数学者を挙げるのはどうかな…
>証明苦手というのはもっと普通の人の話だし

日本の文化の中の普通の日本人という方が正しいだろう
欧米は、ロジックには厳しい。論理の筋が通っていない話は許されない。例えば下記

URLリンク(read2ch.net) 再録
>いやいや、フランス文化圏が私には楽なんですよ。とにかく合理的であり、
>尚且つ論理的ですからん。

この話を思い出した
URLリンク(ameblo.jp)
なぜ肉料理が食べたいのか?|税理士・社労士の○○な話。 2011-10-24
(抜粋)
この本の著者・吉越さんの奥様はフランスの方だそうですが、「夕食に何が食べたいか」と奥様に聞かれたときに、「肉料理」と答えた。
日本の多くの家庭なら、「ハイハイ、お肉ね」となるんでしょうが、吉越家では、「なぜ肉料理が食べたいのか」を説明しないと却下されるそう。
「昨日は魚料理だったし、最近手に入れた、お肉にあうあのワインを飲んでみたいから、肉料理がいい」という明白な理屈が必要。

我が家のように「なんとなく中華」とか、「お腹がラーメンな気分」とか、「なんでもいい」とか、曖昧な返答では許してもらえないのですね(笑)
この曖昧さ・感情論も日本人ならではで、よい文化だとは思いますが、これだけでは、問題解決できないことも。

トラブルが起こった時に、日本文化だと「申し訳ございませんでした!」と、謝ることで一件落着となることもあるけど、そのトラブルが起こった原因がうやむやになることも多々。
かといって、理屈だけで突き詰められるのも日本人には馴染まない。

論理的ロジックで骨組みを固め、隙間部分を「義理・人情・浪花節」で埋める。
日本人には一番適しているのでは、と著者は書いています。

私も仕事の中では、「なぜ」に重点を置いて、考え、聞くように心がけています。
(引用おわり)

441:132人目の素数さん
14/04/06 16:03:24.19
>私の人生には、おもちゃも色紙(いろがみ)ももういらない。幾何があれば暮らしていける。
ワロタw

442:現代数学の系譜11 ガロア理論を読む
14/04/06 16:51:04.68
>>441
ども

再録
スレリンク(math板)
URLリンク(ja.wikipedia.org)
米沢富美子

1948年:小学校5年生のとき、知能テストでIQ175と判明[1]。大阪府の小学校で1位の数値だった。
^ その後、高校1年までに数回の知能テストを受けて常に170台をキープしていたが、「170台という数字は自分では不満で、実際には200以上でもとれたはずだと考えていた」
「知能テストの問題は、どんなものかという大体の様子を一度知ってしまえば、出題者の意図が透けて見えるようになる。そういう場合には、出題者のIQまで推定できたりする」
「問題作成時点で、170台以上のIQは想定されていなかったのだろう。問題数がもっとあれば、IQ200でも優に出せたのに、とずっと考えていた」と述べている(『まず歩きだそう』p.38-39)。

(あと追加)
学外における役職
1996年-1997年、日本物理学会会長(女性として初)。なお、同じく京大理学部の1学年先輩である坂東昌子も、後に会長に就任。
2000年-2003年、日本学術会議第18期会員
受賞歴
1984年、第4回猿橋賞
1989年、科学技術庁長官賞
1996年、エイボン女性大賞
2001年、日本女性科学者の会・功労賞
2002年、福澤賞
2005年、ロレアル-ユネスコ女性科学賞。内閣総理大臣賞。大阪府知事賞。吹田市長賞。

443:現代数学の系譜11 ガロア理論を読む
14/04/06 16:57:08.99
>>439
補足

>再度聞くということは
>おぬし迷っているね

そもそもこんなところで人に聞いても、ずばりの答えは無いだろう
分かって聞いている。というか、聞いてみたいのかな

>>440
>この本の著者・吉越さんの奥様はフランスの方だそうですが、「夕食に何が食べたいか」と奥様に聞かれたときに、「肉料理」と答えた。
>日本の多くの家庭なら、「ハイハイ、お肉ね」となるんでしょうが、吉越家では、「なぜ肉料理が食べたいのか」を説明しないと却下されるそう。
>「昨日は魚料理だったし、最近手に入れた、お肉にあうあのワインを飲んでみたいから、肉料理がいい」という明白な理屈が必要。

日本の文化では、子供が言い訳をすると「理屈を言うな!」と叱られたり
大人でも、論破されると「理屈っぽい」と問答無用みたいなったり
そういう日本文化どっぷり中学生が、”証明苦手というのはもっと普通の人の話”というんだろうな
フランス文化の中では、そういう人間は夕食さえ自分の好みを主張できない・・・

444:132人目の素数さん
14/04/06 17:03:20.06
>>440
あいまい文化も好きだけど
責任不在または押し付け合いになるという欠点はあるね
ほら、ここの掲示板の旧運営の人たちとか・・・・・

445:現代数学の系譜11 ガロア理論を読む
14/04/06 18:04:56.56
>>432
参考
URLリンク(mathoverflow.net)
How to Tackle the Smooth Poincare Conjecture asked May 20 '12 at 6:07 MathOverflow

446:132人目の素数さん
14/04/06 18:55:31.08
多額な借金で人生つんでるヤシたちw


URLリンク(manta.blog.jp)<)


URLリンク(sisutore.blog.jp)

447:現代数学の系譜11 ガロア理論を読む
14/04/06 19:04:22.35
>>445
参考

URLリンク(www.math.msu.edu)
Selman Akbulut's Home Page ミシガン州立大

URLリンク(www.math.msu.edu)
Publications:
84. Gluck twisting 4-manifolds with odd intersection form (with K.Yasui)
(to appear Math Research Letters)

URLリンク(www.math.msu.edu)
Book project: 4-Manifolds March 31, 2014 (これよく纏まっている)

448:現代数学の系譜11 ガロア理論を読む
14/04/06 19:12:01.16
>>447
参考
URLリンク(en.wikipedia.org)
Selman Akbulut (born 1949) is a Turkish mathematician and a Professor at Michigan State University. His research is in topology.

Career
In 1975 he earned his Ph.D. from the University of California, Berkeley as a student of Robion Kirby. In topology, he has worked on handlebody theory, low-dimensional manifolds, symplectic topology, G2 manifolds.
In the topology of real-algebraic sets, he and Henry C. King proved that every compact piecewise-linear manifold is a real-algebraic set; they discovered new topological invariants of real-algebraic sets.

He has developed 4-dimensional handlebody techniques, settling conjectures and solving problems about 4-manifolds, such as Zeeman conjecture,[1] Harer-Kas-Kirby conjecture, Scharlemann problem,[2] and Cappell-Shaneson problems.[3][4][5]
He constructed an exotic compact 4-manifold (with boundary)[6] from which he discovered "Akbulut corks".[7]

His most recent results concern the 4-dimensional smooth Poincare conjecture.[8] He has supervised 10 Ph.D students as of 2011. He has more than 80 papers and 2 books published, and several books edited.

He was a visiting scholar several times at the Institute for Advanced Study (in 1975-76, 1980?81, 2002, and 2005).[9]

449:132人目の素数さん
14/04/07 12:14:50.09
>>434
ところが、研究対象の定義もあやふやなのに、何故か計算だけはちゃんとできて
それで論文は一応書けているって連中も結構居るんだよなぁ

450:132人目の素数さん
14/04/08 17:35:07.57
それは、まだ分野自体が発展途上ではっきりと公理化されていない、とかの事情ではなく?

451:132人目の素数さん
14/04/10 14:38:36.69
いや、教科書に書いてあるような定義も覚束ずに、
でも、その数学的対象に対して何か計算はしましたって言う話
オレの知ってるケースでは、どうも定義は、共同研究者か(元)指導教官の頭の中にあるっぽいw

452:132人目の素数さん
14/04/10 23:43:25.90
名古屋の亡くなったM先生や退官したA先生のお弟子さん達のこと言ってるの?

453:現代数学の系譜11 ガロア理論を読む
14/04/12 06:25:52.30
>>449-452
どもです

>いや、教科書に書いてあるような定義も覚束ずに、
>でも、その数学的対象に対して何か計算はしましたって言う話
>オレの知ってるケースでは、どうも定義は、共同研究者か(元)指導教官の頭の中にあるっぽいw

おもしろい話だ

”で、高校数学を乗り越えて、大学数学にたどり着くと証明の嵐
ここも数学を道具として使う分野だとあまりやらないかもしれないが数学科だと避けられない
証明こそが数学だと思い知ることになるけどここでつまずく人が多数派だろう”>>434

と関連していると思うが
大学教官が学生に期待しているのは、手足と腕力ってことだろう
昔、高校の物理の先生が京大の物理出身で、「大学で10年くらい同じテーマで研究している。簡単な話で毎年研究室に入ってくる学生にテーマとして与えるんだ」と

そのテーマを選んだ人たち、「定義は、共同研究者か(元)指導教官の頭の中にある」ってこと

それで言いたいことは、「証明こそが数学だ」の否定だ
”大学教官が学生に期待しているのは、手足と腕力ってこと”→「証明こそが数学だ」

でも、大学教官の数学は、コンセプトであり、概念であり、ランドスケープであり、哲学なんだ

454:現代数学の系譜11 ガロア理論を読む
14/04/12 06:27:45.08
>>453
補足

>そのテーマを選んだ人たち、「定義は、共同研究者か(元)指導教官の頭の中にある」ってこと

そのテーマを選んだ人=そのテーマを学生に与える側の人たち

455:132人目の素数さん
14/04/13 19:00:31.21
根本的に勘違いしてるようだね。
ブルバキ流の定義、証明を羅列した論文を書いてる数学者であっても
具体例を泥臭くいじりまわして研究してるわけよ。
泥臭さを論文ににじませるかどうか、という記述スタイルの違いに過ぎない。

456:現代数学の系譜11 ガロア理論を読む
14/04/13 20:52:04.22
>>455
実に日本人的な文を書いてくれますね
誰に言って居るのか

主語がない
主語がないので、どのレス番号に対してのコメントなのか不明(レス番号を明示すれば主語も決まるけど)

従って、コメントの趣旨が不明確
ということに気付いているのかどうか? まあ日本人ですね・・

457:132人目の素数さん
14/04/13 21:35:12.30
いいこと言ってるつもりなのか?
脳みそ沸いてるんじゃない?

458:132人目の素数さん
14/04/14 02:41:56.95
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。

459:132人目の素数さん
14/04/16 19:27:56.11
このスレ向きの話かも
「『数学ガール ガロア理論』第10章」の解説
URLリンク(anond.hatelabo.jp)

ガロア流のガロア群の定義解説のハマリ所
URLリンク(blog.zaq.ne.jp)

460:現代数学の系譜11 ガロア理論を読む
14/04/16 22:01:24.23
>>434
>中学2年ぐらいで証明という概念が初等幾何をメインに導入されるがあそこで数学を諦める人は相当多いだろうなぁ
>もしくは諦めはしないが、苦手意識を持つという人も多い

ゆとり世代なんかね? 昔、その程度は小学校でやった

>証明こそが数学だと思い知ることになるけどここでつまずく人が多数派だろう

山登り
自分の足で上る以上、一歩一歩進むしかない

それが、論証の嵐だと思うか当然と思うか・・
欧米文化では当然と思うんだろうね

が日本文化では、「問答無用」「理屈を言うな」だったり・・
実に、日本文化です

461:現代数学の系譜11 ガロア理論を読む
14/04/16 22:37:13.50
>>434
>証明わからなかったら定義だけはしっかり確認しようというのが自分自身への戒め

「デカルト」「カント」「ショーペンハウエル」
URLリンク(ja.wikipedia.org)
デカンショ節は学生歌という経歴を持つことから、かけ声の「デカンショ」は、「デカルト」「カント」「ショーペンハウエル」の略であるという良く知られた説もある。

上記ドイツ哲学を含め、”定義だけはしっかり確認しよう”は数学に限らないでしょ
URLリンク(ja.wikipedia.org)
分析哲学(ぶんせきてつがく、英: Analytic philosophy)は、ゴットロープ・フレーゲとバートランド・ラッセルの論理学的研究に起源を持ち、ルートヴィヒ・ウィトゲンシュタインの誤解を含め多大な影響を受けた論理実証主義の批判と受容を経て形成された哲学の総称である。
なお広辞苑によれば、分析哲学の主唱者はジョージ・エドワード・ムーアである。

論理的言語分析の方法を用いて諸命題を明晰化することが、諸命題の論理形式の分析で達成できるほとんど唯一のことであるという考えである。

方法的特徴
分析哲学の方法としては以下のことが挙げられるだろう。反対に言えば、こうした特徴をそなえていれば、マルクス主義であっても分析的マルクス主義として分析哲学の1分野であり得るし、形而上学も研究方法次第では分析形而上学となり得る。

言語分析、概念分析を中心的な道具とする
定義や議論の論理構造をはっきりさせ、できるだけ明瞭な論述を行うことを旨とする(記号論理学を応用する)
言語表現のレベルで問題を設定する
分析の正しさの基準として、しばしば思考実験に訴える
経験科学の知見を取り入れて議論を展開することも多い

462:132人目の素数さん
14/04/17 01:33:53.79
>>460
1950年以降証明は中学で習うから70歳以上の爺さんかな?

463:現代数学の系譜11 ガロア理論を読む
14/04/19 06:26:23.10
>>462
88歳なんだけど
まあ、そこまではいかないかな

確か、小学校6年のときに、先生がさばけた人で、図形の学習をずいぶんやった
理由は、女子で私立の中学を受けるお嬢様たちが結構いたのと、どうせ中学校でやるからすこしやっておこうと、あるいは図形は直感的に分かりやすいとか

中学校3年のとき、数学の教師が数学倶楽部みたいなのを作っていて、誘われた
手作りのテキストで、3x3の行列とか、クラメールの行列解法を教えてらったり

で、戻ると「中学2年ぐらいで証明という概念が初等幾何をメインに導入されるがあそこで数学を諦める人は相当多いだろうなぁ」>>434に対して、へ~そうなん?と思ったり

「で、高校数学を乗り越えて、大学数学にたどり着くと証明の嵐
ここも数学を道具として使う分野だとあまりやらないかもしれないが数学科だと避けられない」>>434に対して
山登りに例えれば、”証明の嵐”は”いずれ未踏峰に上る必要もあるから、鍛えるために自分の足で上って下さい”と、富士登山で一番下から歩いて登れみたいな

「証明こそが数学だと思い知ることになるけどここでつまずく人が多数派だろう」>>434に対して
いまの時代、何合目かまではバスで行って、その先を徒歩で。それも数学だろうと。富士登山、登る途中は”証明の嵐”で、”証明こそが数学”かもしらんが、登って頂上に立つとまた違った風景が見える

「証明わからなかったら定義だけはしっかり確認しようというのが自分自身への戒め」>>434に対して
定義というのは、富士登山で言えば登り口。頂上に立つと、”ああ、山の構造がこうだから、ここから登るのが良いのだ”と、なんでこんな定義になっているのかと、定義の意味が見えてくる。そういうものじゃないですか?

464:132人目の素数さん
14/04/19 08:45:04.97
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。

465:現代数学の系譜11 ガロア理論を読む
14/04/19 09:37:42.89
>>464
おつかれさまです(2ちゃんねる語では「乙です」)

ageで書いてくれるのが良い

以前、藤崎 詩織 AAを投稿してくれていた人がいた

いま、他スレに行ったみたい

ひんがら目ちゃんか、まあ頑張って

466:現代数学の系譜11 ガロア理論を読む
14/04/19 10:42:51.48
大学数学勉強法はあるのか?
大学院突破の数学勉強法はあると思う
それを手がかりに勉強を進めるというのもありだろう

URLリンク(books.rakuten.co.jp)
新司法試験合格者に学ぶ勉強法
発売日: 2009年02月 ・著者/編集:木山泰嗣 ・出版社:法学書院

商品の詳細説明
【目次】(「BOOK」データベースより)
その1 未修者コース 合格者4人の勉強法(「努力は報われる」と信じ、そして実行したこと/合格のために、何をどう書くか、そのために何をするか/予習・復習が合格への基本 ほか)/
その2 既修者コース 合格者6人の勉強法(条文は法律家の基本であり、合格のための原点である/ロー・スクールでしっかり取り組んだかどうかで合否が決まる/刑事系の勉強法についての一提言 ほか)/
その3 リベンジ組 合格者5人の勉強法(自分の勉強方法と答案の書き方を分析してみてほしい/三つの基本ー(1)定義(2)条文・趣旨(3)基本論点/三回しかないチャンスを確実にモノにするために ほか)

【著者情報】(「BOOK」データベースより)
木山泰嗣(キヤマヒロツグ)
弁護士。上智大学法学部卒。専門は税務訴訟(鳥飼総合法律事務所勤務)。「わたしの本棚」(書評コラム)を連載し(受験新報2008年10~12月号)、
現在、「小説で読む行政事件訴訟法」を連載中(受験新報2008年12月号~)(本データはこの書籍が刊行された当時に掲載されていたものです)

467:現代数学の系譜11 ガロア理論を読む
14/04/19 10:46:30.94
まあ、司法試験みたいに、合格することが至上命令で、そのためにどうするか>>466
だが、大学の数学はそういうものじゃないだろう

ひとそれぞれに勉強の仕方も違うし、求めるものも違う、分野も違うだろう
だから言えることは、自分で模索するしかないってことかな

求めよ、さらば与えられん
なんのために勉強するのか?

答えがまだ無い人は
まず楽しんで勉強することを覚えよう

468:現代数学の系譜11 ガロア理論を読む
14/04/19 20:09:46.13
望月理論の応用
”Teichmuller space below the Planck length, then it would, with Mochizuki’s discovery of
a deep connection between the Teichmuller theory and number theory [3], give number
theory an important place in the fundamental laws of nature.”という

URLリンク(vixra.org)
Teichmuller Space Interpretation of Quantum Mechanics
Authors: Friedwardt Winterberg
Submission history
[v1] 2013-01-23 18:36:44
抜粋
1. Introduction

In this regard it is remarkable that a deep connection between the Teichmuller theory [2]
and number theory has most recently been discovered by S. Mochizuki in his
groundbreaking work “Inter-universal Teichmuller Theory,” which is an arithmetic
version of the Teichmuller theory for number fields with an elliptic curve [3].

Conclusion
Schrodinger said: “I would not call the entanglement one, but rather the
characteristic trait of quantum mechanics, the one that enforces its entire departure from
classical lines of thought.” If it should find its rational explanation in a conjectured
Teichmuller space below the Planck length, then it would, with Mochizuki’s discovery of
a deep connection between the Teichmuller theory and number theory [3], give number
theory an important place in the fundamental laws of nature.

469:132人目の素数さん
14/04/19 20:58:20.44
アーベルなガロワタワーがないから解は一位に決まらない。

470:132人目の素数さん
14/04/20 01:50:59.35
解は一意だろ。代数的に解けないだけ。

471:現代数学の系譜11 ガロア理論を読む
14/04/20 18:10:49.10
下記江口徹で、AdS/CPM対応という用語が出てくる
が、AdS/CMT とする方が一般的かも

URLリンク(www.saiensu.co.jp)
数理科学 2014年4月号 No.610

特集:「物理現象における表現の多様さ」
- 様々な視点がもたらす深い理解 -

・「ホログラフィック原理の意味とその発展」 江口 徹

472:現代数学の系譜11 ガロア理論を読む
14/04/20 18:14:17.53
>>471
補足
URLリンク(en.wikipedia.org)
In theoretical physics, AdS/CMT correspondence is the program to apply string theory to condensed matter theory using the AdS/CFT correspondence.
Over the decades, experimental condensed matter physicists have discovered a number of exotic states of matter, including superconductors, superfluids and Bose?Einstein condensates.
These states are described using the formalism of quantum field theory, but some phenomena are difficult to explain using standard field theoretic techniques.
Some condensed matter theorists hope that the AdS/CFT correspondence will make it possible to describe these systems in the language of string theory and learn more about their behavior.[1]

References
Merali, Zeeya (2011). "Collaborative physics: string theory finds a bench mate". Nature 478 (7369): 302?304. Bibcode:2011Natur.478..302M. doi:10.1038/478302a. PMID 22012369.
URLリンク(dx.doi.org)
Sachdev, Subir (2013). "Strange and stringy". Scientific American 308 (44): 44. Bibcode:2012SciAm.308a..44S. doi:10.1038/scientificamerican0113-44.
URLリンク(dx.doi.org)

473:現代数学の系譜11 ガロア理論を読む
14/04/20 21:29:17.20
>>471
補足
URLリンク(www.saiensu.co.jp)
数理科学 2014年4月号 No.610
■リレー連載
・「数学的な感覚の探求 15」
  ~数学を利用する感覚~ 徳山 豪

これが結構面白い
徳山 豪:東大数学科DRから日本IBMへ
いろんな数学問題が相談として持ち込まれ解いたという

474:132人目の素数さん
14/04/21 22:01:54.90
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   
.     |   \ ∠イ  ,イイ|    ,`-' |      
     |     l^,人|  ` `-'     ゝ  |        
      |      ` -'\       ー'  人           私は死なないわよ。
    |        /(l     __/  ヽ、            でも最近一寸太ったかしら。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、           Windows ver.10 で    
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            元の痩せた姿にしてよね。
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \              
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

475:現代数学の系譜11 ガロア理論を読む
14/04/22 08:11:52.78
>>474

藤崎 詩織ちゃん、ageありがとう

>でも最近一寸太ったかしら。

一日一回ageをやったら、きっと元の痩せた姿になる。だから、がんばってくれ!

476:132人目の素数さん
14/04/22 09:34:53.96
きもい

477:現代数学の系譜11 ガロア理論を読む
14/04/22 23:20:44.42
きもいというおまえの方が
きもい

478:132人目の素数さん
14/04/23 01:37:43.54
            ゙'.    '.;`i  i、 ノ  .、″
             ゙'.     ,ト `i、  `i、    .、″
                |    .,.:/""  ゙‐,. `    /
             `  .,-''ヽ"`    ヽ,,,、   !
                、,、‐'゙l‐、      .丿 : ':、
               、/ヽヽ‐ヽ、;,,,,,,,,,-.ッ:''`  .,"-、
              ,r"ツぃ丶  ``````   ../  `i、
          ,.イ:、ヽ/ー`-、-ヽヽヽ、-´    .l゙`-、
         _,,l゙-:ヽ,;、、             、、丶  ゙i、,,、
        ,<_ l_ヽ冫`'`-、;,,,、、、、.............,,,,、.-`":    │ `i、
      、、::|、、、ヽ,、、.    ```: : : ```      、.、'`  .|丶、
     .l","ヽ、,"、,"'、ぃ、、,、、、、.、、、.、、、_、.,,.ヽ´    l゙  ゙).._
    ,、':゙l:、、`:ヽ、`:、  : `"```¬―'''"`゙^`     : ..、丶  .l゙ `ヽ
   ,i´.、ヽ".、".、"'ヽヽ;,:、........、           、、...,,,、-‘`   、‐   |゙゙:‐,
  ,.-l,i´.、".`ヽ,,,.".`   `゙゙'"`'-ー"``"``r-ー`'":      _.‐′  丿  ,!
 j".、'ヽ,".、".、"`''`ー、._、、、           、._,、..-‐:'''′   .、,:"  丿
 ゙l,"`"`''ヽヽ"`"`  ```゙'''"ヽ∠、、、、ぃ-`''''": `      、._./`  ._/`
  `'i`ヽヽヽ`''ーi、、、: :                   、.,-‐'`   、/`
   ``ヽン'`"`  : `~``―ヽ::,,,,,,,,,,.....................,,,,.ー'``^    ,、‐'"`
      `"'゙―-、,,,,..、、               : ..,、ー'"'`
           : `‘"`―---------‐ヽ``"''''''""


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch