14/05/26 00:09:55.58
> 数列 a_n の一般項を (外側から n 番目の括弧の組の数) で (その内側にある括弧の組の数)を割った値
の部分は、分母を (その内側にある(n+1)番目の括弧の組の数) としても同じ結果になる
>>642の言葉を借りれば、全体について「並列度」を「子供の数の平均」と定義し直して0世代目から並べるイメージ
複雑度が上昇しないことは示せても、最終的に ()()...() の形に収束することは示せないので
厳密な証明には別のアプローチが必要になりそう
あと、具体例を無理に想像するとアッカーマン関数のように急激に増加するのでおすすめしない
651:132人目の素数さん
14/05/26 00:41:37.68
>629
> (X(Y)Z)の外側および内側の括弧はそれぞれ対応する括弧であるものとし
仮定から、この操作が可能ならばX,Y,Zにまたがる括弧の組は無い。
従ってこの操作で生成される(XYZ)内の括弧の組は(X(Y)Z)より一つ少なく、
かつ、(XYZ)をいくつ繋げても(XYZ)をまたぐ括弧の組は生まれない。
ゆえに(XYZ)の繰り返し回数が有限ならばこの操作は有限回で収束する。
652:132人目の素数さん
14/05/26 01:10:19.38
具体的に書かないのは反論させないためか。
653:132人目の素数さん
14/05/26 01:12:04.91
((()))=(X(Y)Z)
X=(
Y=
Z=)
654:132人目の素数さん
14/05/26 07:20:59.41
>>648=>>650です
>>651
> 仮定から、この操作が可能ならばX,Y,Zにまたがる括弧の組は無い。
「X,Y,Zにまたがる」を「X,Y,Zとその外側にまたがる」
と言いかえれば成り立ちますね。
確かに、外側同士が「対応する括弧」ですから
選んだ部分列の内側に低レベルの括弧は存在しないといえます。
655:132人目の素数さん
14/05/26 12:57:51.49
何度かトライ(631,633,637,642)しましたが、結局、
記号列を食べるある関数F[]を用意し、それが、
F[A(X(Y)Z)B] = F[A(XYZ)B] + α
F[A(XYZ)(XYZ)...(XYZ)B] = F[A(XYZ)B] +β
ただし、常に、α>β≧0 (「任意個」のβが積み重なっても、αより小さい)
を満たせばよいということですよね。
そのようなF[]が存在するのは確かっぽいけど、具体的な中身は、当初の予想とは異なり面倒そうです。
656:132人目の素数さん
14/05/26 13:05:54.05
具体的に書こうとしないからはっきりしないが
(()()())()()
->
(()())(()())(()())()()
が反例じゃないか。
657:132人目の素数さん
14/05/26 13:58:04.27
>>656は確かに、>>648と>>650の反例になってますね
(単純に平均値を取っただけでは、ゴミを巻き込むことで
評価関数が 3/3 --> 6/5 と増えてしまう)
出題者の>>655さんは解決に近づいているようなので
本職の数学者の降臨を待ちつつ様子見
658:132人目の素数さん
14/05/26 14:13:52.78
出題者は>>629だが
659:132人目の素数さん
14/05/26 20:25:57.86
>>648
一応自作なので出典は無し。
同じような問題はどこかにあるかも。
>>657
>>655は出題者ではないよ。
660:132人目の素数さん
14/05/26 21:23:06.93
これは「ヒドラゲーム」と同じ類の問題だな
下のリンク先にグラフ木と順序数との対応付けの方法が載ってる
URLリンク(math.andrej.com)
URLリンク(ja.googology.wikia.com)
661:132人目の素数さん
14/05/29 09:53:05.43
>>465
> 面積nを超える平面図形は、内側(境界含む)に
> n+1個の格子点を含むように配置できることを示せ。
>
> ってのが面白かった。
ブリクフェルトの定理。有界がいる。
662:132人目の素数さん
14/06/05 03:17:39.63
四角形の4辺と2本の対角線の長さが全て奇数であるものは存在しないことを証明せよ。
663:132人目の素数さん
14/06/14 11:48:01.30
四角形の頂点をそれぞれabcdとしたとき、の辺の長さab, bcと対角線の長さacには
ab^2 + bc^2 = ac^2の関係があり ab,bcを奇数とすると、ab^2、bc^2はそれぞれ
奇数であるから、ac^2は偶数なっちゃうよ。
acを奇数とするとac^2は奇数だから。ab,bc,acがすべて奇数であるこたーないってこと?
664:132人目の素数さん
14/06/14 12:23:54.72
長方形でない四角形もあるだろ