14/05/04 02:53:40.74
>>563
0<θ<π/2 のとき、マクローリン展開から
sinθ > θ - (1/6)θ^3,
sinθ > θ - (1/6)θ^3,
tanθ > θ + (1/3)θ^3,
辺々たすと
2sinθ + tanθ > 3θ,
これは Snellius-Huygensの不等式として知られている。
この不等式で θ= π/4 - π/6 = π/12 として
sinθ = sin(π/4 -π/6) = (√3 -1)/(2√2),
tanθ = tan(π/4 -π/6) = 2-√3,
を使えば
4{(√3 -1)/√2 +(2-√3)} > π,
√2 + √3 = 4{(√3 -1)/√2 +(2-√3)} + (√2 -1)^2・(2-√3)^2・(√3 -√2)
> 4{(√3 -1)/√2 +(2-√3)}
> π,