面白い問題おしえて~な 二十問目at MATH
面白い問題おしえて~な 二十問目 - 暇つぶし2ch362:132人目の素数さん
13/09/01 05:14:53.83
>>351

∴ {y_1、y_2、・・・・・、y_(n-1)} の部分集合(φも含める)について、
 要素の和をnで割った余りを求めると、n種類すべてを含む。

 とくに -(x_1 + ・・・・・ + x_n) と同じ余りのものを含む。
∴ 和がnの倍数であるようなn個組の整数を取り出せる。

以上から、nが素数のとき、命題は成立する。

(2) nが合成数のとき。

nの素因数の一つをpとし、n=pmとする。

 素数の場合と同様にして、n-1個の整数の中から、和がpの倍数であるようなp個組の整数を除去する。
これは2m-1回繰り返すことができる。
その結果、和がpの倍数であるようなp個組が2m-1組できる。{最後にp-1個が残るが}

これらp個組の和をpで割った値を {z_1, z_2, ..., z_(2m-1)} とおく。
帰納法の仮定により、これら2m-1個の整数から、和がmの倍数であるようなm個を取り出せる。

よって、和がpmの倍数であるような、pm個を取り出すことも可能。

  (三重県 鳥居さんからの解答)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch