13/09/01 05:14:53.83
>>351
∴ {y_1、y_2、・・・・・、y_(n-1)} の部分集合(φも含める)について、
要素の和をnで割った余りを求めると、n種類すべてを含む。
とくに -(x_1 + ・・・・・ + x_n) と同じ余りのものを含む。
∴ 和がnの倍数であるようなn個組の整数を取り出せる。
以上から、nが素数のとき、命題は成立する。
(2) nが合成数のとき。
nの素因数の一つをpとし、n=pmとする。
素数の場合と同様にして、n-1個の整数の中から、和がpの倍数であるようなp個組の整数を除去する。
これは2m-1回繰り返すことができる。
その結果、和がpの倍数であるようなp個組が2m-1組できる。{最後にp-1個が残るが}
これらp個組の和をpで割った値を {z_1, z_2, ..., z_(2m-1)} とおく。
帰納法の仮定により、これら2m-1個の整数から、和がmの倍数であるようなm個を取り出せる。
よって、和がpmの倍数であるような、pm個を取り出すことも可能。
(三重県 鳥居さんからの解答)