13/09/01 05:00:47.76
>>351
2n-1個の整数の中に、余りが同じものがn個以上あれば、そこからn個を取り出すと和はnの倍数なので、命題は成立する。
よって、以下では、余りが同じものはn-1個以下とする。
nの因数についての帰納法による。
(1) nが素数のとき
2n-1個の整数をnで割った余りの順に並べ、x_1, x_2, ..., x_(2n-1) とする。
同じ余りがn個以上並ばないため、
j-i ≧ n-1 ⇒ x_j - x_i はnで割リ切れない。
ここで、i=1,2,・・・・,n-1 に対して
y_i = x_(n+i)- x_i ≠ 0 (mod n)
つまり、「非合同ペア」がn-1組できる。
{x_1、x_(n+1)}
{x_2、x_(n+2)}
・・・・・・・・
{x_(n-1)、x_(2n-1)}
各ペアから一方を選ぶやり方は
{y_1、y_2、・・・・・、y_(n-1)}
の部分集合(φも含める)と対応しており 2^(n-1) とおりある。