13/04/12 01:30:23.74
固有値の練習問題か
101:132人目の素数さん
13/04/13 10:18:47.82
【問題】
円に内接する四角形ABCDがある.
△ABC, △BCD, △CDA, △DABの内心をそれぞれI, J, K, Lとする.
四角形IJKLは長方形であることを証明せよ.
102:132人目の素数さん
13/04/14 21:49:51.94
ある私鉄会社の駅であるA駅は上りの一番ホーム、下りの2番ホーム、
そして支線に向かう3番ホームの3つのホームがある。だが支線用の
3番ホームは2番ホームとの共用で、支線から来た乗客が昇り路線
を利用するには反対側の1番ホームに行かねばならない。しかし3番ホーム
には階段しかないのだ。階段を上るのが嫌だという乗客がそのまま
2番ホームに来た列車に乗り込んで隣のB駅まで行ってそこでエスカレーター
に乗って上りの特急を使うという事は時間的な遅れ無しに可能だろうか?
因みにA駅では急行列車は停まるが特急は通過する。隣のB駅には特急が
停まる。
103:132人目の素数さん
13/04/14 22:40:59.16
鉄オタはキチガイ、まで読んだ
104:132人目の素数さん
13/04/14 23:20:08.72
西村京太郎に聞けば
105:132人目の素数さん
13/04/14 23:47:46.74
うむ。実のところこの問題(102)には正解は無い。だが多少の推論を
行う事は可能だ。実際想定されたような乗換が可能だったとしよう。
そうであれば、上り特急に乗りたい乗客は全員そうするだろうという
事だ。だがそれは鉄道会社にとって望ましい事だろうか。
106:あぼーん
あぼーん
あぼーん
107:132人目の素数さん
13/04/15 00:11:42.80
経由した駅を正しく申告しなけりゃ無賃乗車だ
108:132人目の素数さん
13/04/15 06:35:00.16
数学というより算数って感じのパズルっぽい問題だけど解説が意味不明なので知恵を貸してください
【正方形3個からなる図形(図1)を組み合わせて長方形を作る。
このとき作られた長方形を図1の図形を二個組み合わせた長方形(図2)で分割しうる場合と分割し得ない場合がある。
たとえば図1の図形を組みあわせて図3のような長方形を作れば、この長方形は図2の図形で分割する事ができる。
それでは図1の図形を組み合わせて作ることのできる長方形で、かつ図2の図形では分割し得ないのはどれか。】
図1は↓のようなL字 図2は↓のLを2個組み合わせた縦3*横2の長方形 図3は図2を縦に2個横に2個並べた6*4の長方形
□
□□
選択肢
1 縦3*横4の長方形
2 縦5*横6の長方形
3 縦4*横9の長方形
4 縦5*横9の長方形
5 縦5*横10の長方形
分かりますか?
109:132人目の素数さん
13/04/15 07:35:47.49
5は3の倍数で無いから問題外
1,2,3は図2で分割できることがすぐ分かる
答えがあるなら4しかない
実際4は図1で作れる
110:132人目の素数さん
13/04/15 08:56:29.24
解説も同じことをいっていて
3の倍数であり6の倍数でないのは4っていってます
でもその考えだと例えば3*3の9マスの正方形も3の倍数であり6の倍数でないですよね
この正方形L字の図形3つで組み合わせることなんてできなくないですか?
111:132人目の素数さん
13/04/15 09:04:31.53
>>110
解説は少し端折ってるんだと思うよ。
>>109さんの言うように、1、2、3、5は除外される。
4は、6の倍数ではないので「図2の図形では分割し得ない」を満たし、
かつ、3の倍数なので図1の図形を組み合わせて作ることのできる」の“候補”だってだけ。
実際作れるかどうかは確認が必要で>>109さんはちゃんと言及している。
112:132人目の素数さん
13/04/15 09:22:39.70
できるものを探すというよりできないものを省くという考え方をしてるんですね
ありがとうございました
113:132人目の素数さん
13/04/15 15:46:47.67
出来るものを全て探してるんだろ
114:132人目の素数さん
13/04/15 23:12:16.84
0~9までの10個の数字を4つ選ぶとき(重複あり)特定の数字4桁に一致する確率は
1/10*1/10*1/10*1/10で1/10000ですよね?
数字の順番は気にせず特定の4桁の4つの数字と一致する確率というのはどう考えればいいんでしょうか
コンビネーション使おうと思ったんですが重複ありだと10C4とはいかず
ひとつ数字選んで箱に戻してまたひとつ選んでって考えだと
(10C1)^4で特定の4桁と順番まで一致する確率と同じになってしまいます
115:132人目の素数さん
13/04/15 23:27:20.63
>>114
例えば1111に一致する確率と1234に一致する確率は等しくない
116:132人目の素数さん
13/04/16 00:20:22.35
なるほど
では順番は関係なく数字だけ一緒な確率はx/10000
特定の数字が4つともバラバラならx=4!
2つ同じで2つバラバラならx=4!/2!
3つ同じで1つだけ違うならx=4!/3!
4つとも一緒ならx=1
であってますか?
117:132人目の素数さん
13/04/16 18:31:29.86
このスレが最適かな?
自分で作ったわけでは無いけど、法則性あるらしい・・・。
おれには無理だorz
Q. XとYを求めよ。
■27
5490 25090 19600 39200 44690
7410 33810 26400 52800 60210
■26
6200 28800 22600 45200 51400
6300 28300 22000 44000 50300
■25
6000 27800 21800 43600 49600
6200 28600 22400 44800 51000
■26
6500 X ? ? ?
6000 Y ? ? ?
118:132人目の素数さん
13/04/17 15:34:13.77
オカルト板に「エスパー検定」ってスレは無いの?
ここは、数学板だよ?
119:132人目の素数さん
13/04/19 17:41:02.93
規則性なし、かな?
120:132人目の素数さん
13/04/21 22:52:23.63
URLリンク(i.imgur.com)
121:132人目の素数さん
13/04/22 00:05:21.69
16/5
122:132人目の素数さん
13/04/22 00:17:22.49
8/3
123:132人目の素数さん
13/04/28 00:19:16.43
3の倍数と3が付く数字に☆マークを付けていく。
無限に☆マークを付けていった時☆マーク率は何%に近づくか?
124:132人目の素数さん
13/04/28 11:29:10.27
100
125:132人目の素数さん
13/04/28 12:31:22.03
Π(パイ)を無限に表記したとき、同じ数字が1まんこ並ぶ事はあるか?ないか?
そしてそれを証明せよ。
126:132人目の素数さん
13/04/28 13:54:47.80
無理
127:132人目の素数さん
13/04/28 14:13:46.85
証明不可能であることを証明せよ
128:132人目の素数さん
13/04/28 14:31:34.05
問題文くらいまともに書け
129:132人目の素数さん
13/04/28 15:44:47.26
証明不可能であることを証明できないことなら証明できる
130:132人目の素数さん
13/04/28 15:56:10.38
>>124
桁が増えるほど3を含む割合が高くなっていくだろうことは分かるけど、
それを示す方法が分からん
131:132人目の素数さん
13/04/28 16:22:39.97
p>1-(9/10)^n
132:132人目の素数さん
13/04/29 14:03:37.64
上の右辺は先頭を固定したn+1桁の数で先頭以外に3を含まない数の割合
n+1桁の数で3を含まない数の割合pはそれより大きい
133:132人目の素数さん
13/04/30 23:55:13.46
AB=6、BC=5、CA=4の△ABCがある。
∠Aの二等分線とBCの交点をD、
∠Bの二等分線とCAの交点をEとし、
CからADに下ろした垂線の足をF、
CからBEに下ろした垂線の足をGとおくとき、FGの長さを求めよ。
134:132人目の素数さん
13/05/01 00:11:09.91
再録かよ
135:132人目の素数さん
13/05/01 02:45:41.79
>>133
第二余弦定理より、
cos(∠A) = 9/16,
cos(∠B) = 3/4,
cos(∠C) = 1/8,
∴ ∠C = 2∠B,
AE : EC = AB : BC = 6 : 5,
AC=4 より、 AE=24/11, EC=20/11.
BD : CD = AB : AC = 6 : 4,
BC=5 より、BD=3, CD=2.
AF : FD = 5 : 1,
より AF=(5/6)AD, FD=(1/6)AD.
AD=3√2.
BG : GE = 11 : 1,
より BG=(11/12)BE, GE=(1/12)*BE.
BE=(12/11)*5√(7/8).
一方、CF=√(7/2), CG=5/√8,
よって、FG=3/2.
136:132人目の素数さん
13/05/01 03:47:42.49
>>135
中学生の問題です
137:132人目の素数さん
13/05/01 07:57:06.36
それが何か?
138:132人目の素数さん
13/05/01 09:37:06.56
6点(0,0),(1,0),(2,0),(0,1),(1,1),(2,1)を考え
点(0,1)から点(2,0)まで移動する最短経路を考える。
n=1以下のように表記する。
□□
n=2の場合は以下であり、点(0,2)から点(3,0)までを考慮する。
□□
□□□
n=3を同様に以下とするとき、最短経路の数Pnを求めよ。
□□
□□□
□□□□
139:132人目の素数さん
13/05/01 09:50:50.62
┌┬┐ こういうことだろうか
└┴┘
┌┬┐
├┼┼┐
└┴┴┘
┌┬┐
├┼┼┐
├┼┼┼┐
└┴┴┴┘
140:132人目の素数さん
13/05/01 10:24:18.57
そう
141:132人目の素数さん
13/05/01 11:25:12.70
カタラン
142:132人目の素数さん
13/05/01 12:05:22.81
C[n+2]-C[n+1] かな
143:132人目の素数さん
13/05/01 13:10:52.65
nのときの図に対して、n+1個の横マスを下段に追加した図がn+1のときの図、ということ?
144:132人目の素数さん
13/05/01 13:17:25.24
nのときの図に対して、n+2個の横マスを下段に追加した図がn+1のときの図
145:132人目の素数さん
13/05/01 13:20:54.09
n+2か。最初が2個だった
146:132人目の素数さん
13/05/01 13:33:47.06
>>142でいいんじゃないの
147: ◆6LZ.cs02lU
13/05/01 19:41:45.52
1,2,3,4,5に続く数
(漢数字酉)
148:132人目の素数さん
13/05/02 14:58:58.89
>>136
中学の知識で解いてほしいのか?
いやだね、教えてやらねーYO!
149:132人目の素数さん
13/05/02 18:19:50.60
じゃん
150:132人目の素数さん
13/05/02 18:27:35.30
三角形の秘密はね♪
151:132人目の素数さん
13/05/02 18:49:34.86
ガイシンナイシンスイシンジュウシンボウシンシンシン、ヘイヘイヘイッ♪
152:132人目の素数さん
13/05/02 21:13:11.72
>>120、>>133
DQNにも分かる解法を教えてください
153:132人目の素数さん
13/05/02 21:15:53.41
DQNに教えたって無駄
154:132人目の素数さん
13/05/02 21:35:49.49
120は相似比と1:√2くらいで解けるけど133を中学生チックに解くのは俺にはできん
155:132人目の素数さん
13/05/02 23:08:18.86
AB//FG
156:132人目の素数さん
13/05/03 18:46:38.41
任意の四角形において
対辺の積の和は必ず対角線の積以上になるってやつ
AB×CD + AD×BC ≧ AC×BD
中学のときに習ったけど何で未だにこうなるかわからん
157:あのこうちやんは始皇帝だった
13/05/03 19:39:55.15
テメ~ら、いいかげんにしねえと、ブッ殺すぞ!
無職の、知的障害の、女性恐怖症の、頭デッカチの虚弱児・ひ弱の、ゴミ・クズ・カス・無能・虫けらのクソガキども!
死ね!!!!!!!!!!!!!!!!!!!!!!
158:132人目の素数さん
13/05/03 20:01:38.83
>>156
URLリンク(www004.upp.so-net.ne.jp)
159:132人目の素数さん
13/05/03 21:46:01.60
>>155
やっと分かった
CF、CGを延長してABと交わる点をH、Iとすると、
△BCGと△BHGが合同だから△BCHはBC=BHの二等辺三角形
同様に△ACIもAC=AIの二等辺三角形
BH=BC=5だからAH=1、
AI=AC=4、AH=1だからHI=3
F、Gはそれぞれ二等辺三角形の底辺の中点で、△CHIでHIとFGが平行、中点連結定理でFG=HI/2=3/2
160:132人目の素数さん
13/05/04 01:51:20.20
>>159
神と呼ばせてください
161:あぼーん
あぼーん
あぼーん
162:132人目の素数さん
13/05/09 20:30:46.97
水槽の中に魚が200匹います。そのうち99%がグッピーです。ここからグッピーのみを取り出して、グッピーの、魚全体に対する割合を98%にしたいと思います。何匹取り出せば良いでしょうか。
ちなみにマイクロソフトの入社問題です。
163:132人目の素数さん
13/05/09 20:37:42.85
100?
164:132人目の素数さん
13/05/09 22:00:50.82
やっぴー グッピー うれピーな
165:132人目の素数さん
13/05/09 22:01:22.56
面白いのか?
166:あぼーん
あぼーん
あぼーん
167:132人目の素数さん
13/05/09 22:13:24.05
マイクロソフトのこと時々マイケルソフトって読んじゃう
168:132人目の素数さん
13/05/10 01:01:51.53
>>162
普通に計算すれば答えは簡単だけど、即答出来る人材かどうかを知りたいんだろうね、マイクロソフト側としては
マイクロソフトの入社試験では金貨100枚を分けあう問題が秀逸だった
169:あぼーん
あぼーん
あぼーん
170:132人目の素数さん
13/05/10 02:09:09.71
>>168
並みいる秀才たちを困惑させた「マイクロソフトの入社試験問題」集 - 全20問
URLリンク(ameblo.jp)
50組の夫婦のいる村の男全員が不貞をしています、という問題、解答見たけどさっぱり理解出来ん
誰か解説してくれ
長方形のケーキがあります、という問題には別解を思いついた
171:132人目の素数さん
13/05/10 02:45:26.83
数学じゃなくてなぞなぞみたいなものだな
つか面白くない
172:132人目の素数さん
13/05/10 07:04:13.29
マイクロソフトだったっけ
An=n^(n-1)^(n-2)^(n-3)^....^2^1
Anを、nから1までの数を下から累乗で積み重ねた数とする。
A1=1 A2=2^1 A3=3^2^1
A97は、97^96^95^94^93^......^2^1で、巨大数となる。
このとき、(A97-A1)(A97-A2)(A97-A3)....(A97-A98)(A97-A99)
はいくつになるか。
173:132人目の素数さん
13/05/10 07:11:02.62
>>172
何故 (A97-A97) は書かないのか
ソフトウェア業界の体質を象徴しているのか?
174:132人目の素数さん
13/05/10 08:46:23.52
>>170
不貞の夫が一人だけなら、その妻は必ず気付く。
なぜなら、自分の夫以外の49人の夫は不貞をしていないことが
分かっているはずなので、候補は自分の夫のみになるから。
だから、1日目に誰も殺されないということは、
不貞の夫は一人でないことを示す。
N日目には、不貞の夫がN人ちょうどであれば、その妻にはわかる。
他の不貞の夫はN-1人しかいないが、N-1日目までの推論で
不貞の夫がN-1人以下であることはない(N人以上いる)から。
N=50日目に、不貞の夫が全部で50人いて、
自分の夫も不貞をしていることが分かる。
175:132人目の素数さん
13/05/10 09:32:31.44
>>174
でも実際には、少なくとも自分の夫以外の49人が不貞してて、
他の妻から見ても48人以上不貞してる事は分かる事は
1日目の段階で明らかだよな?
そんな、不貞の夫が1人しかいないという
明らかに偽の仮定をしないといけないのか?
176:132人目の素数さん
13/05/10 09:50:12.16
仮定から夫全員不貞してるじゃん
177:132人目の素数さん
13/05/10 10:03:14.66
推論の順番が逆だよな。
前提条件として全ての妻は49人の確定した不貞男と
1人の不確定な不貞男(自分の夫)がいることを知っている。
従って、妻達の興味の対象は他の妻が確定した不貞男を
48人と思っているか、49人と思っているかである。
これについて、女王の発言は何の情報も与えない。
故に、何もおきない。
不貞男が1人しかいないと考える妻がいないことは明らかであり、
同様にN<48日目までの推論についての議論は無意味。
もし仮に妻達が何らかの方法で夫の不貞を察知できるなら
初日から全員不貞を知ってて法を無視している状態のはずだから、
即日皆殺しだな。
178:132人目の素数さん
13/05/10 10:08:11.18
もしかして、
「妻たちは村中の夫全員が不貞を働いているのを知っているが、自分の夫の
不貞をについては分からない」
というバカ妻揃いという想定?
179:132人目の素数さん
13/05/10 10:23:15.54
>>175
逆からたどっていけばいいんじゃないか?
議論を分かりやすくするために50人の妻の中から1人を選んで(仮に妻1と名づける)妻1の視点から考えることにする。
妻1には自分の夫以外の49人が不貞夫であることは分かっているので、そこから
自分以外の妻には少なくとも48人の不貞夫が見えていることが分かる。
そこで妻1は、議論を分かりやすくするために自分以外の49人の妻の中から1人を選んで(仮に妻2と名づける)
常に妻2の視点から考えることにしよう、と考えるだろう。そこで妻1は次のように考える。
妻2には自分の夫を除いて少なくとも48人が不貞夫であることは分かっているので、そこから
不貞夫を持つ48人の妻には少なくとも47人の不貞夫が見えていることが分かる。
そこで妻2は、議論を分かりやすくするために不貞夫を持つ48人の妻の中から1人を選んで(仮に妻3と名づける)
常に妻3の視点から考えることにしよう、と考えるだろう。そこで妻2は次のように考える、と妻1は考える。
妻3には自分の夫を除いて少なくとも47人が不貞夫であることは分かっているので、そこから
不貞夫を持つ47人の妻には少なくとも46人の不貞夫が見えていることが分かる。
そこで妻3は、議論を分かりやすくするために不貞夫を持つ47人の妻の中から1人を選んで(仮に妻4と名づける)
常に妻4の視点から考えることにしよう、と考えるだろう。そこで妻3は次のように考える、と妻2は考える、と妻1は考える。
……
頭が痛くなってきたのでここら辺でやめておく
180:132人目の素数さん
13/05/10 11:25:15.50
【>>170の完璧な解法】
俺からすれば、50人全員が不貞夫であることは分かっているので
そこからその50人の妻には自身の夫を除く49人の不貞夫が見えていることが
俺には分かる。(その中の1人を妻1と名付ける)
妻1からすれば、自分の夫を除く49人が不貞夫であることは分かっているので
そこからその49人の妻には自身の夫を除く48人の不貞夫が見えていることが
妻1には分かる、ということが俺には分かる。(その中の1人を妻2と名付ける)
妻2からすれば、自分の夫を除く48人が不貞夫であることは分かっているので
そこからその48人の妻には自身の夫を除く47人の不貞夫が見えていることが
妻2には分かる、ということが妻1には分かる、ということが俺には分かる。(その中の1人を妻3と名付ける)
……
妻49からすれば、自分の夫を除く1人が不貞夫であることは分かっているので
そこからその1人の妻には自身の夫を除く0人の不貞夫が見えていることが
妻49には分かる、…、ということが妻1には分かる、ということが俺には分かる。(その1人を妻50と名付ける)
妻50からすれば、自分の夫を除く0人が不貞夫であることは分かっているので
そこから自分の夫が不貞夫でなければこの村には不貞夫はいないということが
妻50には分かる、ということが妻49には分かる、…、ということが妻1には分かる、ということが俺には分かる。
【以下につづく】
181:132人目の素数さん
13/05/10 11:25:48.31
【>>180のつづき】
ところが、少なくとも一人の不貞夫がいることが判明してしまった。自分の夫が不貞夫でないとすると、これは矛盾である。
この時点で妻50は自分の夫が不貞夫であることが分かるので1日目に処刑するはずだろうことが
妻49には分かる、ということが妻48には分かる、…、ということが妻1には分かる、ということが俺には分かる。
ところが、誰も処刑されることなく2日目を迎えてしまった。自分の夫が不貞夫でないとすると、これは矛盾である。
この時点で妻49は自分の夫が不貞夫であることが分かるので2日目に処刑するはずだろうことが
妻48には分かる、…、ということが妻1には分かる、ということが俺には分かる。
……
ところが、誰も処刑されることなく49日目を迎えてしまった。自分の夫が不貞夫でないとすると、これは矛盾である。
この時点で妻2は自分の夫が不貞夫であることが分かるので49日目に処刑するはずだろうことが
妻1には分かる、ということが俺には分かる。
ところが、誰も処刑されることなく50日目を迎えてしまった。自分の夫が不貞夫でないとすると、これは矛盾である。
この時点で妻1は自分の夫が不貞夫であることが分かるので50日目に処刑するはずだろうことが
俺には分かる。
【証明終わり】
182:132人目の素数さん
13/05/10 11:31:19.88
1日目2日目……ってのはおかしい気がするけどなあ。
1日目に何も起きない段階で推論は完成して2日目に全員殺害になるんじゃないか?
183:132人目の素数さん
13/05/10 11:46:44.95
実際に50日経たないと矛盾してることは分からないよ
184:132人目の素数さん
13/05/10 12:15:24.52
女王の発言前後で状況が変わったことといえば、以下ぐらいしかないよな。
●発言前
・夫は、「自分の妻と他の夫が、村に不貞夫がいるかどうか知っているか」を知らない
●発言後
・夫は、「自分の妻と他の夫が、村に不貞夫がいることを知っている」ことを知った
女王が発言した内容は村の夫・妻は全員知ってるから、
「周知した」ということしか意味がない。
185:132人目の素数さん
13/05/10 12:58:55.16
>>170の50組の夫婦の質問文は
「女王が発言しました。どうなるでしょう」
だから、リンク先の解説が誤りで
「何も起こらない」がMS的正解かもしれないな。
186:132人目の素数さん
13/05/10 13:42:22.28
今となっては良く知られてるクイズの一種だから、ググれば色々と解説出てくると思うよ
wikipediaの共有知識なんかも要参照
「全員が知っている」、「全員が知っている、ということを知っている」、「全員が知ってる、ということを知っている、ということを知っている」・・・
という情報(知識)はそれぞれ別物であることがポイント
ただし >>170のリンク先の問題文では条件が足らないから、解説のような推論は成り立たない
(>>170の解説・答えを不自然・非現実的に感じるのは、勝手に不自然・非現実的な条件を仮定してるから)
187:132人目の素数さん
13/05/10 14:23:05.04
面白く脚色したつもりだろうが、つまらない上に曖昧さだけを表面化させた感じ
結果としてただのとんち、もしくは条件逆算問題
188:あぼーん
あぼーん
あぼーん
189:132人目の素数さん
13/05/10 21:20:58.71
最初の段階で、全妻が「全妻が×夫は48人以上であることを知っている」ことを知っている。
従って、×夫が48人以下ならその妻は自分の夫が×夫であることがわかるので殺害するはずだが殺害されない。
すると2日目の朝には、全妻が「全妻が×夫は49人以上であることを知った」ことを知ることになる。
従って、×夫が49人以下ならその妻は自分の夫が×夫であることがわかるので殺害するはずだが殺害されない。
すると3日目の朝には全妻が×夫は50人いることを知ることになり、全妻が夫を殺害する。
女王がやってくるまえに全夫は殺害されているはず。
190:132人目の素数さん
13/05/10 21:27:33.84
>>189
>50組の夫婦のいる村の男全員が不貞をしています。
この文はこの問題の読者に対してであって、村の人がこのことを知っているわけではない。
村の人が分かっていることは
>女はみな、自分の夫以外の男が不貞をすれば即座にわかります。でも自分の夫が不貞をしてもわかりません。
>村の掟では不貞をはたらいた夫の妻は、夫を即日殺さなければなりません。
という2点だけ
191:132人目の素数さん
13/05/10 21:45:20.59
>>190
全妻には他の妻の夫が全員×夫だとわかっているのだから、
どの妻も「他の妻全員が少なくとも48人×夫がいることを知っている」と知ることになるだろ。
192:132人目の素数さん
13/05/10 21:48:10.59
>>190
> この文はこの問題の読者に対してであって、村の人がこのことを知っているわけではない。
当たり前だろ。知ってたら1日目で終わるわw
193:132人目の素数さん
13/05/10 22:10:11.88
>>191
事実A:「全妻には自分の夫以外の49人の×夫が見えている」
>>189の1行目は事実Aから導かれるが2行目では事実Aに反する仮定をしてるな
同じように見えても>>174は事実Aを使ってなくて一般のNに関する数学的帰納法を使っている
194:132人目の素数さん
13/05/10 22:14:31.52
>>193
>>174はいきなり事実に反する仮定をしてるじゃんか。
195:132人目の素数さん
13/05/10 22:16:00.98
> 不貞の夫が一人だけなら
この仮定は事実に反しないのか?
196:132人目の素数さん
13/05/10 22:21:25.69
>>194-195
そうじゃなくて、本題の50人っていうのをN人に一般化して問題を解いてるんだよ
197:132人目の素数さん
13/05/10 22:25:23.40
解けてねえって話だよ
198:132人目の素数さん
13/05/10 22:31:23.21
えっ、具体的な数値を一般化して解くのは数学ではよくある解法だと思うけど…
それとも>>174の証明は間違ってるってこと?
199:132人目の素数さん
13/05/10 23:05:38.55
>>174が正しかったら>>189も正しくね?
なんで、>>189に対しては事実に反する仮定をしているからダメって言って、
>>174には言わないんだ?
>>174の仮定は事実に反してるだろ?
200:132人目の素数さん
13/05/10 23:14:00.89
>>199
>>189は1行目では事実Aに基づいた仮定をしていて、2行目では事実Aに反する仮定をしてる
つまり、1行目と2行目とで相反する仮定を使ってる。それなのに1行目の結論を2行目に適応してるから矛盾なんだよ
201:132人目の素数さん
13/05/10 23:15:04.89
>>200
>>174もそうだよ。
202:132人目の素数さん
13/05/10 23:15:56.14
>>201
>>189の2行目がどうして従うのか分からないんだが、解説して
203:132人目の素数さん
13/05/10 23:18:07.79
>>201
>>174のどことどこが相反する仮定を使ってるの?
204:132人目の素数さん
13/05/10 23:32:26.98
女王の台詞が悪い気がする。
「夫が不貞を働いたと思う人は挙手してください」
と言う質問を繰り返したときに、何回目で不貞が
露呈するかという問題なら素直に理解できる。
205:132人目の素数さん
13/05/10 23:55:32.02
>>204
そうか?
その方式でも、本質的なところは変わってないように思うが
206:132人目の素数さん
13/05/11 00:02:24.40
問題:無理数の無理数乗で有理数となるものが存在することを示せ」
※高校数学の範囲で証明できます
207:132人目の素数さん
13/05/11 00:29:31.52
>>206
分からない問題はここに書いてね360
スレリンク(math板:418番)
208:132人目の素数さん
13/05/11 00:32:31.87
p=log(q)
209:132人目の素数さん
13/05/11 07:43:01.55
個人的にはウィキの「共有意識」の説明が分かりやすい
島民10人のうち、3人の目が青で7人の目が緑の場合、
7人には青い目の人が3人見えるが、3人には2人しか見えない
210:132人目の素数さん
13/05/11 08:46:07.78
事実に反する仮定って意味があるの?
「不貞夫が一人」は偽なんだから、「不貞夫が一人ならその妻は気づかない」も真になってしまわないの?
211:132人目の素数さん
13/05/11 08:55:00.62
Wikiの説明もそうだけど、本当に共有されているのは
「不貞夫が1人以上存在すること」ではなくて、
「お互いが不貞夫を何人いるはずだと思っているか」という
推論のステップであって、推論の同期をとることが本質的。
「不貞夫が1人以上存在する」という発言で、
全員の推論段階がN=1に同期すると言いたいのだろうが、
他人の思考が同期したことを確信できる情報量が無いと
自然な解釈とは思えないな。
212:132人目の素数さん
13/05/11 12:03:26.60
共通意識って、今月中に抜き打ちテストをやるっていう話に似てるね
抜き打ちだから、生徒が全く予期出来ないタイミングでやらなければならない
となると31日の実施は無理、何故なら30日が過ぎた時点で31日の実施が予期出来てしまうから
となると30日の実施も無理、何故なら29日が・・・・・・・・・ 結局テストを実施出来る日は存在しないという話
共通意識もテストの話も、理屈は分かるんだが釈然としないものが残るね、なにかがおかしい気がする
ああいう連鎖って本当に存在するのかなぁ
213:132人目の素数さん
13/05/11 12:04:40.80
>>212 訂正
共通意識 → 共有意識
214:132人目の素数さん
13/05/11 14:22:13.97
共有知識
URLリンク(ja.wikipedia.org)
青い目の人が最低でも一人はいるというアナウンスは、青い目の人が4人以上いるケースでは必要ないと思う
むしろ必要なのは共通のゲーム開始時間
215:132人目の素数さん
13/05/11 14:44:18.07
>>210
仮定してるのは「不貞夫が一人」じゃないぞ
あくまでも仮定の大枠は「自分の夫は不貞でない(不貞夫は自分の夫以外の49人)」だ
>>212
>>186でも書いたけど共有知識の仮定って不自然で非現実的な仮定だから
その結果が不自然・非現実的に見えてしまっても当たり前
推論がちゃんと行われる為には
「全員頭がいい(演繹的に推論できる)」「全員頭がいいと知っている」「そのこと自体を知っている」「そのこと自体を(ry」・・・
という仮定などが必要だが、現実世界ではそんな知識はまず知り得ない
216:132人目の素数さん
13/05/11 14:57:36.48
>>214
「最低でも1人いる」というアナウンスは必要だよ
島の掟を「明日○月×日から施行する」などという設定にすれば、共通のゲーム開始時間を作れるが
アナウンスがなければ、元の問題の時と同じような推論はできない(仮定の矛盾を示せない)
217:132人目の素数さん
13/05/11 16:26:59.16
>>212
連鎖って厄介な問題だよね、人間の頭脳では捉えられないようになってるのかも
カントのアンチノミーに追加していいのかもしれん
2つの封筒問題スレ 4
スレリンク(math板)
上のスレでも一時期連鎖が話題になってた
「二つの封筒を用意して、片方にはもう片方の二倍の金額を入れる、最小値は1円、
片方を開封した被験者にもう片方の金額がバレてはいけない」という問題
ここでも連鎖によって困ったことが起きる
15円30円のペアが無理なのは言うまでもない、もし被験者が15円を開封したらもう片方が30円だとバレてしまう
となると30円60円も無理、すでに15円30円があり得ないと分かってるんだから、
被験者が30円を開封した時点でもう片方が60円だとバレてしまう
となると60円120円も無理・・・・・・・・・・
共有意識も、抜き打ちテストも、二つの封筒も、全て連鎖が絡んでる
218:132人目の素数さん
13/05/11 17:35:07.46
現実の世界なら
「相手も知っているかもしない」
「相手に自分の考えが読まれてるかもしれない」
ぐらいのことを考えるのがやっと
不確かなことしか解らない
たからこそ相手の裏をかいたりもできるが、裏の裏をかかれる可能性もある
219:132人目の素数さん
13/05/11 20:33:03.55
永久に亀の後ろを走り続けてればいいと思うよ
220:132人目の素数さん
13/05/21 04:03:46.25
128×128のチェス盤からマス目を1個除いたものはL字牌で敷き詰められることを証明せよ
221:132人目の素数さん
13/05/21 07:30:36.25
3×2
222:あぼーん
あぼーん
あぼーん
223:132人目の素数さん
13/05/21 23:17:32.59
3×2、5×9
2×2、5×5
224:132人目の素数さん
13/05/28 21:00:46.76
ベタかな。
(アナログ)時計で、夜の0時0分から、翌日の0時0分までに、長針と短針が重なるのは何回か?ただし0時0分は除くものとする。
225:132人目の素数さん
13/05/28 21:24:30.12
0<x<1440
6x-x/2=360n ∴x=720n/11
n=1~21
226:132人目の素数さん
13/05/28 22:02:30.58
↓これって、オマイラが歌ってるんだよな?
URLリンク(www.youtube.com)
227:132人目の素数さん
13/05/29 14:25:36.00
太郎くんと花子ちゃんが商店街で買い物に行ったとする。
二人が帰りに廃校舎に遊びに行き二時間後に帰宅。
およそ三ヶ月後に花子ちゃんが吐き気をもようしたと仮定した場合
この問題の登場人物が三人になっている確率は?
228:132人目の素数さん
13/05/29 21:39:05.48
体K上の多項式 f(X) = X^3-3X-1 ∈ K[X] は、
K内に少なくとも1根を持つものとする。
このとき、fの重複度を込めた3つの根は
全てKに含まれることを示せ。
229:132人目の素数さん
13/05/31 09:48:29.07
>>228
ちょいとズルいかもしれんが
まず複素数で考えてみると、
X=2Yとおけば、f(X)=8Y^3-6Y-1
f(X)=0⇔4Y^3-3Y=1/2
Y=cos20゚,cos140゚,cos260゚はこれを満たす。(3倍角の公式 cos3θ=4(cosθ)^3-3cosθ より)
よって、f(X)の根は 2cos20゚,2cos140゚,2cos260゚。
ここで、α=2cos20゚とおくと、
2cos140゚=-2cos40゚=-2(2(cos20゚)^2-1)=-α^2+2
と書ける。
これを踏まえ、一般の体で考える。
f(X)のK内における根の一つをαとすると、
f(X)=(X-α)(X^2+αX+α^2-3) と因数分解できる。
g(X)=X^2+αX+α^2-3 とおく。g(X)がK内に一つ根を持てば、残り一つもKに含まれる。
g(-α^2+2)
=(-α^2+2)^2+α(-α^2+2)+α^2-3
=α^4-4α^2+4-α^3+2α+α^2-3
=α^4-α^3-3α^2+2α+1
=(α^3-3α-1)(α-1)
=0
より、-α^2+2はg(X)の根。
したがって、f(X)の根は全てKに含まれる。□
230:132人目の素数さん
13/05/31 12:53:24.66
なるほどー
231:132人目の素数さん
13/06/02 05:19:51.90
正八面体の一つの面を床に置いた時、真上から見たらこの図形はどう見えるか。[出典・T大]
232:132人目の素数さん
13/06/02 20:29:34.74
正六角形
233:231
13/06/04 05:57:11.87
>232
もう少し詳しく。
ちなみにT大は駒場にある大学ね。
234:132人目の素数さん
13/06/04 08:11:07.45
床と平行な正三角形とその辺それぞれにくっついた斜めの二等辺三角形
とでも言えばいいのか
235:132人目の素数さん
13/06/04 09:48:53.11
URLリンク(gascon.cocolog-nifty.com)
236:233
13/06/06 04:23:32.40
>234
まあ…。
正六角形の中に六芒星があるように見える、とかそんな感じか。実際には作図させる問題みたいだが。
237:狢 ◆yEy4lYsULH68
13/06/06 06:19:32.49
馬鹿はその存在が無駄なんや。そやし馬鹿は居なくてもエエのやナ。
ケケケ狢
238:132人目の素数さん
13/06/06 07:47:23.91
>>236
>>235を見る気はないのか?
239:狢 ◆yEy4lYsULH68
13/06/06 09:11:27.26
馬鹿板は無駄。
狢
240:132人目の素数さん
13/06/06 09:49:23.77
6点(1,0,0),(0,1,0),(0,0,1),(-1,0,0),(0,-1,0),(0,0,-1)
平面x+y+z=-1を床とする。この平面上にない3点から床に下ろした垂線の足は
(1,0,0)→(1/3,-2/3,-2/3)
(0,1,0)→(-2/3,1/3,-2/3)
(0,0,1)→(-2/3,-2/3,1/3)
∴6点(1,0,0),(0,1,0),(0,0,1),(1/3,-2/3,-2/3),(-2/3,1/3,-2/3),(-2/3,-2/3,1/3)により囲まれる図形
241:あぼーん
あぼーん
あぼーん
242:132人目の素数さん
13/06/06 12:44:18.53
3y+2= 2y+3
それぞれ移項して、3y-3=2y-2
3(y-1) =2(y-1)
両辺 (y-1) で割って 、3=2
あれっ、 3=2に
243:あぼーん
あぼーん
あぼーん
244:132人目の素数さん
13/06/06 12:46:06.54
三人の女性が3000円のゲームを買うことにした。
三人が1000円ずつ出し合い3000円を店員に渡したところ、奥に入った店員は主人から「少し古いので500円まけてやりな。」といわれた。
ところがこの店員は「500円では半端だ。三人なので300円まけたことにして、200円は俺がもらっておこう。」と考え、女性に300円返した。
仲良し三人組は100円ずつ分け合った。
三人は最初1000円ずつ出したがあとで100円返してもらったので、結局各人900円出したことになる。
支払った三人の900円の合計と店員のポケットに入れた200円を合計すると2900円になる。
100円はどこに消えたんだろうか?
245:あぼーん
あぼーん
あぼーん
246:132人目の素数さん
13/06/06 13:07:15.10
意味不明な計算してるだけだ。あまりにも今さらだし。
247:あぼーん
あぼーん
あぼーん
248:132人目の素数さん
13/06/06 13:14:15.44
2500(ゲームの代金)+200(俺の取り分)=3000(初めの支払い)-300(まけた代金)
249:あぼーん
あぼーん
あぼーん
250:132人目の素数さん
13/06/06 17:13:27.34
>>242
0で割るなし
251:132人目の素数さん
13/06/06 18:26:09.16
>>242
計算の過程でどこかに偶然ゼロが含まれてしまうこともあるから注意しなくてはいけない、
という警告としての価値があるね、その書き込み
なかなか面白い
252:236
13/06/06 19:03:23.78
>238
文字化けしてて見れなかった。手書き画像をアップしてあるとか?
253:132人目の素数さん
13/06/06 19:13:00.03
>>252
URLリンク(blog-imgs-43.fc2.com)
254:132人目の素数さん
13/06/07 20:05:46.98
数列
4,6,7,9,10,11,12,14,□,・・・
数学好きならすぐ分かるかな、有名だし
255:132人目の素数さん
13/06/07 20:08:20.62
つまらん
256:132人目の素数さん
13/06/07 20:15:15.44
数学好きだけどさっぱりわからんし聞いたことも見たこともない
257:132人目の素数さん
13/06/07 20:23:13.60
フィボナッチ数を除いた自然数列
258:132人目の素数さん
13/06/07 20:47:40.02
>>257正解!
259:132人目の素数さん
13/06/07 21:02:33.88
フィボナッチ数を除いた自然数列は、項番nの初等関数として表すことは出来るか?
260:132人目の素数さん
13/06/07 21:37:43.62
F[k]={(1+√5)^k/√5} ({m}:mに最も近い整数) を使って
nまでに何個フィボナッチ数が存在するかを求めて…みたいな?
うーん、しかしこれでは初等関数にはならないなぁ
261:あぼーん
あぼーん
あぼーん
262:252
13/06/08 05:05:22.79
>253
ごめん、やっぱり文字化けしてる。
この携帯ダメだぁ~。7年前に買ったやつだし。
263:132人目の素数さん
13/06/08 12:36:01.57
>>235も>>253も文字化けなど見えん、図しかないぞ
264:132人目の素数さん
13/06/08 14:11:36.56
>>262
PCで見ようぜ…
265:262
13/06/09 20:22:11.76
>264
パソコンはネットに繋がっていない。
266:132人目の素数さん
13/06/12 19:43:39.85
>>220
2^n×2^nのチェス盤について考える
(i)n=1のとき、
L字牌1つで埋まる
(ii)n=kのとき成り立つと仮定する
n=k+1のとき、
2^(k+1)×2^(k+1)=4×2^k×2^kより、
2^k×2^kのチェス盤を四方に並べたものとして考える
ここで、2^(k+1)×2^(k+1)のチェス盤の中央(2^k×2^kのチェス盤の角が互いに接し合う場所)にL字牌を置くと、L字牌が重なっている2^k×2^kのチェス盤は1マス除かれた状態のため、仮定からL字牌で敷き詰められる
また、L字牌が重なっていない2^k×2^kのチェス盤から1マス抜けば、仮定からL字牌で敷き詰められる
(i),(ii)から数学的帰納法より成り立つ
したがってn=7のときの
128×128のチェス盤でも成り立つ
267:132人目の素数さん
13/06/14 22:07:11.25
aを定数として、次の不等式を解け。
ax-2<a^2・x^2-4<ax+2
[法政大]
268:132人目の素数さん
13/06/14 22:22:36.79
>>220>>266
立方体でも類似のことが云えるな。
269:132人目の素数さん
13/06/14 22:54:22.94
>>267
(3/2)^2<(ax-1/2)^2<(5/2)^2
270:132人目の素数さん
13/06/14 23:29:54.62
つまらん。
271:132人目の素数さん
13/06/14 23:58:44.17
計算ドリル問題のどこが面白いやら
272:132人目の素数さん
13/06/15 00:09:51.04
a=b
a^2=ab
a^2-b^2=ab-b^2
(a+b)(a-b)=b(a-b)
a+b=b
b+b=b
2b=b
2=1
なんかこれ思い出したわwwwww
273:132人目の素数さん
13/06/15 00:24:06.66
0で割るやつがあるか
274:132人目の素数さん
13/06/15 00:25:52.10
そんな大人ぶらなくたって・・・
275:132人目の素数さん
13/06/15 07:07:56.30
数的処理もここでいいのかな
8F建ての建物に設置されているエレベーターがいFから上昇して8Fに到着するまでの間に
A~Eの5人がそれぞれ乗り降りをした
5人が次のように述べているとき1~5の中で確実にいえるのはどれか
なお、同じ階である人が乗り、別の人が降りた場合、この2人は乗り合わせたことにはならない
A「私は乗った階から3つ上の階で降りた」
B「私は4Fで降りた。Aと同じ階で乗ったが、降りた階は異なる階だった」
C「私はAが降りた階で乗り、乗った階から2つ上の階で降りた」
D「私は乗った階から2つ上の階で降りた。私は誰とも乗り合わせなかった」
E「私は既に下の階から乗っていたAと乗り合わせCと一緒に降りた」
1 Aは6Fで降りた
2 Bは2Fで乗った
3 Cは7Fで降りた
4 Dは6Fで乗った
5 Eは4Fで乗った
よろしくお願いします
276:132人目の素数さん
13/06/15 07:53:44.33
>いF
277:132人目の素数さん
13/06/15 07:56:13.49
1Fのミスです
階と変換するのがめんどくてF使ってますが原文は全部階で統一してあります
278:132人目の素数さん
13/06/15 08:15:40.33
難しいな
どこがどう面白いのかさっぱりわからん
279:132人目の素数さん
13/06/15 08:46:40.41
(A) Ai + 3 = Ao
(B) Bo = 4, Bi <= 3, Bi = Ai, Ao ≠ Bo
(C) Ci = Ao, Co = Ci + 2
(D) Do = Di + 2, Di >= Ao,Bo,Co,Eo
(E) Ei > Ai, Eo = Co
(C)までの条件で
Ai 1 2 3
Ao 4 5 6
Bi 1 2 3
Bo 4
Ci 4 5 6
Co 6 7 8
となるが、(D)の条件でCi=Ao=4となり矛盾。
280:132人目の素数さん
13/06/15 11:00:00.21
1.
D.
2.
D.
3.
A,B.
4.
A,(E).
5.
A,E.
6.
C,E.
7.
C,E.
8.
281:132人目の素数さん
13/06/15 11:13:41.18
なお、同じ階である人が乗り、別の人が降りた場合、この2人は乗り合わせたことにはならない
282:132人目の素数さん
13/06/15 11:35:29.56
ちなみに答え1です
アプローチの仕方教えてください
283:132人目の素数さん
13/06/15 12:14:17.02
>>275
Bの証言から、Aは4Fで降りていない。
上とAとCの証言から、「Aが2F→5F、Cが5F→7F」または「Aが3F→6F、Cが6F→8F」。
上とDの証言から、「Aが3F→6F、Bが3F→4F、Cが6F→8F、Dが1F→3F」で確定。
上とEの証言から、「Eが4F、5F→8F」。乗った階は確定しない。
よって、1○ 2× 3× 4× 5×。
284:132人目の素数さん
13/06/15 12:20:25.25
>>283はちょっとだけ端折ってるけど、Aの証言から順に愚直に吟味するだけの問題じゃねえか。
Aの証言からAは1→4、2→5、3→6、4→7、5→8のいずれか。
以下、>>283と同様。
285:132人目の素数さん
13/06/15 12:22:12.64
スケジュール表を埋めるだけの作業だしな
286:132人目の素数さん
13/06/15 12:40:25.20
>>283-284
なるほど、解説きくとけっこうすんなりいくもんですね
ありがとうございます
287:132人目の素数さん
13/06/15 15:10:48.18
(D)は、Di >= Ao,Bo,Co,Eo
ともとれるが、Do <= Ai,Bi,Ci,Ei
にもなるのか...
288:132人目の素数さん
13/06/16 06:51:59.79
数学史上、一旦確立した定理が覆っちゃったことってありますか?
289:132人目の素数さん
13/06/16 07:04:35.92
「確立」とは?
290:132人目の素数さん
13/06/16 08:00:28.57
確立=学会が認定
学会すら無かった時代は対象外で
291:132人目の素数さん
13/06/16 09:17:51.07
近代では無いんじゃないか?
未確定なものは未確定として予想扱いにしてただろう。
誰かが言ったから採用なんてのはアリストテレスとかの時代じゃね?
292:132人目の素数さん
13/06/16 12:56:02.72
学会は認定なんかしないだろ
個々人が認めるだけさ
293:132人目の素数さん
13/06/16 14:08:54.12
宇宙定数・・・は物理か。
294:132人目の素数さん
13/06/16 14:12:03.29
クイックソートの最初の論文には誤りが有ったけど、
30年間、誤りが正されなかったんだっけ。
295:132人目の素数さん
13/06/16 22:40:29.82
数学基礎論の分野で何か無いかな
296:132人目の素数さん
13/06/18 02:09:21.69
公理が定理になることはある
297:132人目の素数さん
13/06/18 19:59:22.83
そんなのあったっけ?
ぱっと思いつかんのだが
298:132人目の素数さん
13/06/18 22:10:48.18
>>297
例えばヒルベルトの幾何学基礎論にある定理の一つ「1直線上に任意の4点が与えられたとき、これらの点をA,B,C,Dで表し、A#B#CかつA#C#DかつB#C#Dとすることが常に可能である(ただし、点Xが点Y,Zの間にある関係をY#X#Zで表す)」
というのは元々公理だったけど後に他の順序公理から導けることがわかったから定理になった
299:132人目の素数さん
13/06/20 23:04:01.73
>>267
>>269 の続き...
3/2 < |ax - 1/2| < 5/2,
∴ -5/2 < ax -1/2 < -3/2 または 3/2 < ax -1/2 < 5/2,
∴ -2 < ax < -1 または 2 < ax < 3,
・a>0 のとき
-2/a < x <-1/a または 2/a < x < 3/a,
・a<0 のとき
3/a < x < 2/a または -1/a < x < -2/a,
・a=0 のとき
解なし。
300:132人目の素数さん
13/07/07 NY:AN:NY.AN
関数f(x)は、次の条件①、②を満たしている。
①f'(0)=a
②すべての実数x、yに対してf(x+y)=f(x)+f(y)
(1)f'(x)を求めよ。
(2)f(x)=f(1)xを示せ。
[大阪市大]
301:132人目の素数さん
13/07/08 NY:AN:NY.AN
1/17 = 0.058823529411....なのだが
588^2 + 2353^2 = 5882353 が成り立つことを計算せずに
1/17から説明しなさい。
302:132人目の素数さん
13/07/08 NY:AN:NY.AN
>>301
1/17 なので、
n = 6*(10^2 -2) = 588 とおくと、
2353 = 4n+1,
17n = (10^2 +2)(10^2 -2) = 10^4 -4,
5882353 = (10^4 +4)n +1
= (10^4 -4)n +8n +1
= (17n)n +8n +1
= n^2 + (4n+1)^2,
303:132人目の素数さん
13/07/10 NY:AN:NY.AN
これは面白い。
出典はどこ?
304:132人目の素数さん
13/07/10 NY:AN:NY.AN
2^29 は9桁の数で、各桁の数字がすべて異なる。
0~9のうち、この数の桁に現れない数字を、2^29を直接書き下す以外の方法で決定せよ。
305:132人目の素数さん
13/07/10 NY:AN:NY.AN
(2^29の各桁の数字の和)=2^29≡(2^3)^9*4≡-4≡5 mod9
一方0+1+2+3+…+9=45≡0 mod9
∴現れない数字は4
306:132人目の素数さん
13/07/11 NY:AN:NY.AN
>>303
588^2+2352^2を計算しなさいという問題があり、成立の理由を調べたら17=4^2+1との関係がわかった。
307:132人目の素数さん
13/07/11 NY:AN:NY.AN
すばらしい炯眼
308:132人目の素数さん
13/07/20 NY:AN:NY.AN
f(x+1)g(x-1)-g(x+1)f(x-1)=1
任意のxに対して成り立つから、xをx+1、x-1に置換した
f(x)g(x-2)-g(x)f(x-2)=1
g(x)f(x+2)-f(x)g(x+2)=1
が成立する。両辺を引くと
f(x){g(x-2)+g(x+2)}-g(x){f(x-2)+f(x+2)}=0
よって、ある実数aに対して以下の式が成立する。
a*f(x)=f(x-2)+f(x+2)
a*g(x)=g(x-2)+g(x+2)
1. a≠2のとき
x^2-ax+1=0の2解をα、βとすると
f(x+2)-αf(x)=β{f(x)-αf(x-2)}
h(x)=f(x+2)-αf(x)とおくと
h(x)=βh(x-2)
h(x)=C4(√β)^x+C5(-√β)^x、C4,C5は定数 …①
f(x+2)-βf(x)=α{f(x)-βf(x-2)}
k(x)=f(x+2)-βf(x)とおくと
k(x)=αk(x-2)
k(x)=C6(√α)^x+C7(-√α)^x、C6,C7は定数 …②
①,②から
(β-α)f(x)=C4(√β)^x+C5(-√β)^x-C6(√α)^x-C7(-√α)^x
f(x)=C0(√α)^x+C1(-√α)^x+C2(√β)^x+C3(-√β)^x、C0,C1,C2,C3は定数
2. a=2のとき
f(x+2)-2f(x)+f(x-2)=0
f(x+2)-f(x)=f(x)-f(x-2)
f(x+2)-f(x)=Cとすると
f(x)=C/2*x+C0+C1(-1)^x、C0,C1は定数
309:132人目の素数さん
13/07/20 NY:AN:NY.AN
>>308
> よって、ある実数aに対して以下の式が成立する。
なぜ?
310:132人目の素数さん
13/07/20 NY:AN:NY.AN
a=2のとき、を以下に訂正
f(x+2)-2f(x)+f(x-2)=0
f(x+2)-f(x)=f(x)-f(x-2)
f(x+2)-f(x)=C4+C5(-1)^x、C4,C5は定数とすると
f(x)-f(x-2)=C4+C5(-1)^(x-2)=f(x+2)-f(x)
ここで
f(x)=C4/2*x+C1+(C5/2*x+C3)(-1)^x、C1,C3は定数
とすると
f(x+2)-f(x)=C4/2*(x+2)+C1+(C5/2*(x+2)+C3)(-1)^(x+2)-(C4/2*x+C1+(C5/2*x+C3)(-1)^x)
=C4+C5(-1)^x
となるので、C0=C4/2, C2=C5/2として
f(x)=C0*x+C1+(C2*x+C3)(-1)^x
311:132人目の素数さん
13/07/20 NY:AN:NY.AN
>>309
a*f(x)=f(x-2)+f(x+2)かつa*g(x)=g(x-2)+g(x+2) ⇒ f(x){g(x-2)+g(x+2)}-g(x){f(x-2)+f(x+2)}=0
は自明。逆は知らない。
312:132人目の素数さん
13/07/20 NY:AN:NY.AN
逆が問題なわけだが
313:132人目の素数さん
13/07/20 NY:AN:NY.AN
f(x)(g(x-2)+g(x+2))=g(x)(f(x-2)+f(x+2))=bとすると
g(x)=b/(f(x-2)+f(x+2))
g(x-2)=b/(f(x-4)+f(x))
g(x+2)=b/(f(x)+f(x+4))
f(x)*(b/(f(x-4)+f(x))+b/(f(x)+f(x+4)))=b
f(x)*(f(x)+f(x+4)+f(x-4)+f(x))=(f(x-4)+f(x))(f(x)+f(x+4))
f(x)(f(x+4)+2f(x)+f(x-4))=f(x)^2+(f(x+4)+f(x-4))f(x)+f(x+4)f(x-4)
f(x)^2=f(x+4)f(x-4)
314:132人目の素数さん
13/07/20 NY:AN:NY.AN
a*f(x)=f(x-2)+f(x+2)
f(x+4)=a*f(x+2)-f(x)
f(x-4)=a*f(x-2)-f(x)
f(x+4)f(x-4)=(a*f(x+2)-f(x))(a*f(x-2)-f(x))
=f(x)^2+a*(f(x+2)+f(x-2))*f(x)+a^2*f(x+2)*f(x-2)
となりa=0?
315:132人目の素数さん
13/07/20 NY:AN:NY.AN
>>313
b→b(x)だった.…
316:132人目の素数さん
13/07/22 NY:AN:NY.AN
三角形の内部にあるn個の点によって、この三角形は2n+1個の領域に三角形分割されることを証明せよ
317:132人目の素数さん
13/07/22 NY:AN:NY.AN
え?
318:132人目の素数さん
13/07/22 NY:AN:NY.AN
またポエマーかよ。
今回はどんだけ後出しするのやら。
319:132人目の素数さん
13/07/22 NY:AN:NY.AN
普通に帰納法使うかすれば解けるんじゃね?
どこが面白い問題なんだか
320:132人目の素数さん
13/07/22 NY:AN:NY.AN
2回くらい後出しが必要かw
321:132人目の素数さん
13/07/22 NY:AN:NY.AN
多分、最初の三角形の頂点も含めて、どの3点も一直線上にはないものとする、
くらいは、出てくるかな
322:132人目の素数さん
13/07/22 NY:AN:NY.AN
エスパーしたところによれば、それは要らないと出た
323:132人目の素数さん
13/07/22 NY:AN:NY.AN
>>321
それ俺が昼ごろ書こうとしたが考えなおしたら不要だと気づいてやめた文言じゃないか
324:132人目の素数さん
13/07/24 NY:AN:NY.AN
a,b(≧2)を互いに素な整数とする。
整数m,n(≧0)がm+n=ab-a-bを満たすとき、
mとnのどちらか一方のみが
ax+by(x,yは非負整数)
という形で表せることを示せ。
325:324
13/07/24 NY:AN:NY.AN
m,nの≧0という条件は不要だった
326:132人目の素数さん
13/07/25 NY:AN:NY.AN
アナログで最強のソートはどれか考えたい。
トランプのようなカードに
1000以下の数字が一様平均ランダム&重複ありで書かれている。
全部で100枚程度ある。
数字の小さい順にソートするとき、
平均計算量が一番少なくなるのはどのアルゴリズムか?
道具はなくて広い部屋に裸で閉じ込められたみたいなシュールな状況を想像してほしい
327:132人目の素数さん
13/07/25 NY:AN:NY.AN
あ、床は自由に使ってよしで
328:132人目の素数さん
13/07/25 NY:AN:NY.AN
数字は1~1000の自然数を想定
動きまわるのも、分類が多すぎるのも、作業効率かえって低くなりそうなんで
(1)1の桁だけでまず分類する
(2)分類し終わったら1の桁が、0が下~9が上となるよう順に重ねる
(3)同じように上のカードから10の桁だけで分類する
(4)同じように分類し終わったら10の桁が、0が下~9が上となるよう順に重ねる
(5)同じように100の桁だけで分類
(6)同じように100の桁が、0が下~9が上となるよう順に重ねる
(7)1000だけ補正作業
ただし分担作業する場合は他の人もこの方法について理解している必要がある
329:132人目の素数さん
13/07/25 NY:AN:NY.AN
……(6)だけ9が下~0が上でよかった
330:132人目の素数さん
13/07/25 NY:AN:NY.AN
人手でやるならバケットソート系列が良いだろう
経過が分かり易いしミスったときも挿入し易い
100枚程度なら手の届く範囲で並べられるから
メモリコストも気にしなくて良い
例えば>>328の方法を上の桁からやればいい
331:132人目の素数さん
13/07/26 NY:AN:NY.AN
>>328
上限が1000なら、壁から数字mm離して置いていけば、
1mのソート済みカード列が出来るな。
332:132人目の素数さん
13/07/26 NY:AN:NY.AN
プログラム的にもそれが最速だろうな
333:132人目の素数さん
13/07/26 NY:AN:NY.AN
右手にソート前、左手にソート済みを持ってバブルソートじゃない?
床に比べてメモリアクセス効率がいいぞ
334:132人目の素数さん
13/07/26 NY:AN:NY.AN
1mm単位で調整なんて俺にはそんな手早くできないが
335:132人目の素数さん
13/08/17 NY:AN:NY.AN
4面体の4つの面にそれぞれ0,1,2,3の数字が書かれてあり、
投げた時にそれぞれの面が下を向く確率は1/6,1/3,1/3,1/6とする。
このとき、下を向いた面に書かれている数を「出目」と呼ぶことにすると、
出目を2で割った余りが0,1になる確率はそれぞれ1/2であり、
出目を3で割った余りが0,1,2になる確率はそれぞれ1/3である。
この4面体は、出目を2および3で割った余りがそれぞれ等確率となる、
面の数が最小のサイコロである。
さて、今度は出目を2,3,5で割った余りがそれぞれ等確率となるものを作りたい。
ただし、出目となる数は整数であれば何でもよい。
また、それぞれの面が下を向く確率の比は自由に調整できるものとする。
面の数は最小でいくつだろううか。
336:132人目の素数さん
13/08/17 NY:AN:NY.AN
7面ではできない…と思うが…どうか
337:132人目の素数さん
13/08/19 NY:AN:NY.AN
8面でできた、1から順に
1/30, 1/10, 1/6, 1/5, 1/5, 1/6, 1/10, 1/30
338:336
13/08/19 NY:AN:NY.AN
>>337
1~8でもできたのか……
339:132人目の素数さん
13/08/23 NY:AN:NY.AN
>>324
背理法による。
mもnも ax+by (x≧0, y≧0) の形で表わせたと仮定する。
m+nもそうだから、
ab-a-b = ax+by (0≦x<b-1, 0≦y<a-1)
ab = a(x+1) + b(y+1),
(a,b)=1 より
x+1 ≡ 0 (mod b)、y+1 ≡ 0 (mod a)
x+1 = kb、y+1 = La (k≧1, L≧1).
ab = ab(k+L),
ab(≠0) で割って、
1 = k+L ≧ 2, (矛盾)
∴ m, n の一方は ax+by の形では表わせない。
340:132人目の素数さん
13/08/23 NY:AN:NY.AN
>>316
nについての帰納法による。
(1) n=1 ならば明らかに成立する。
(2) n-1 については命題が成り立つ、と仮定する。
・n番目の点Pnがいずれかの△の内部にあるとき
→ その△がPnにより3つの△に分割される。
・n番目の点Pnがいずれかの辺上にあるとき
→ その辺を共有する2つの△が、Pnにより4つの△に分割される。
・n番目の点が頂点と重なるとき
→ 命題を「n個の相異なる点により・・・・」と解するならば、この場合は生じない。
よってnについても成立する。
341:132人目の素数さん
13/08/24 NY:AN:NY.AN
nは正整数である。n×nのマス目があって、それぞれのマスに1,2…,n^2の数字が一つずつ記されている。
このとき、どのような数字の記し方についても、次の性質をもつ隣接したマスが存在することを示せ。
「隣接したマスの記されている数同士の差はnより小さい」
342:132人目の素数さん
13/08/24 NY:AN:NY.AN
>>339
m,nの一方がax+byの形で表せることの証明が必要なのでは
343:132人目の素数さん
13/08/25 NY:AN:NY.AN
>>335
8面でできることは連立方程式を解けば>>337のように出るんだろうけど、
7面で出来ないことの証明って簡単に出来るの?
344:132人目の素数さん
13/08/25 NY:AN:NY.AN
7面で1/5,1/5,1/5,1/5,1/5となるのは
1/5,1/5,1/5,1/5,a+b+cまたは
1/5,1/5,1/5,a+b,c+d。
1/5,1/5,1/5,1/5,a+b+cのとき
1/3<1/5+1/5なので1/3,1/3,1/3はできない。
1/5,1/5,1/5,a+b,c+dのとき
1/3,1/3,1/3にするには
1/5,1/5,1/5,2/15+1/15,2/15+1/15で
1/2,1/2はできない。
345:132人目の素数さん
13/08/25 NY:AN:NY.AN
(12,12,12,8,7,5,3,1)/60。
(12,12,11,9,8,4,3,1)/60。
(12,12,11,9,7,5,3,1)/60。
(12,12,11,8,7,5,4,1)/60。
(12,12,9,8,7,5,4,3)/60。
(6,6,6,4,4,2,1,1)/30。
(6,6,6,4,3,3,1,1)/30。
(6,6,6,4,3,2,2,1)/30。
(6,6,5,5,4,2,1,1)/30。
(6,6,5,5,3,3,1,1)/30。
(6,6,5,4,4,2,2,1)/30。
(6,6,5,4,3,3,2,1)/30。
(6,6,4,4,3,3,2,2)/30。
346:132人目の素数さん
13/08/26 NY:AN:NY.AN
>>341
147
582
936
347:132人目の素数さん
13/08/26 NY:AN:NY.AN
お前らの中にイケメンいない?
稼げるのかレポ頼むw
URL貼れないから
メーンズ ガーーデン
って検索して!
※正しいサイト名は英語です。
348:132人目の素数さん
13/08/26 NY:AN:NY.AN
nを正整数とする。
任意の2n-1個の整数があったとき、その中から和がnの倍数になるn個の整数が取りだせることを示せ。
349:132人目の素数さん
13/08/27 NY:AN:NY.AN
>>341
×「隣接したマスの記されている数同士の差はnより小さい」
○「隣接したマスの記されている数同士の差はn以上」
ではないか?
350:132人目の素数さん
13/08/31 NY:AN:NY.AN
test
351:132人目の素数さん
13/08/31 NY:AN:NY.AN
>>348
数学の部屋 → 『割り切れる?Part7』
山梨県 Footmark さんからの問題です。高校生以上向き。
三重県からの解答を掲載。
352:132人目の素数さん
13/08/31 NY:AN:NY.AN
test
353:132人目の素数さん
13/08/31 NY:AN:NY.AN
4次元正多面体をカウントしる
354:132人目の素数さん
13/08/31 NY:AN:NY.AN
数学の挑戦!!!
「エンジニアなら、三分以内に解ける;建築家なら、三時間;医者なら、六時間;
会計士なら、三ヶ月; 弁護士なら、解けないかもしれない」という仮説があります。
皆さんはどのくらいの時間がかかりますか?
URLリンク(twitter.com)
問題の画像
URLリンク(pbs.twimg.com)
↑
なぁ、お前らは正解分かる?何分で解いた?
355:132人目の素数さん
13/08/31 NY:AN:NY.AN
>>354
右から二列目の縦列だけに注目すれば答えは簡単だけど、
他の列は無視していいんだろうか?
356:132人目の素数さん
13/08/31 NY:AN:NY.AN
答えは任意の数、少なくとも91と答える奴はアホ
357:132人目の素数さん
13/08/31 NY:AN:NY.AN
>>354 の問題の画像
[2 3 4 15 12]
[3 4 5 28 20]
[4 5 6 45 30]
[5 6 7 66 42]
[6 7 8 ? 56]
m-1, m, m+1, C[2m,2]=m(2m-1), m(m+1)
358:132人目の素数さん
13/08/31 NY:AN:NY.AN
何でわざわざ余分なのがつけてあるのだろうか。
OEISでも91の他はなかった。六角数がわかったくらい。
359:132人目の素数さん
13/08/31 NY:AN:NY.AN
「問題未定義、少数の強法則。」
と唱えるのに、数秒。
何秒かかるかは、滑舌しだい。
360:132人目の素数さん
13/09/01 05:00:47.76
>>351
2n-1個の整数の中に、余りが同じものがn個以上あれば、そこからn個を取り出すと和はnの倍数なので、命題は成立する。
よって、以下では、余りが同じものはn-1個以下とする。
nの因数についての帰納法による。
(1) nが素数のとき
2n-1個の整数をnで割った余りの順に並べ、x_1, x_2, ..., x_(2n-1) とする。
同じ余りがn個以上並ばないため、
j-i ≧ n-1 ⇒ x_j - x_i はnで割リ切れない。
ここで、i=1,2,・・・・,n-1 に対して
y_i = x_(n+i)- x_i ≠ 0 (mod n)
つまり、「非合同ペア」がn-1組できる。
{x_1、x_(n+1)}
{x_2、x_(n+2)}
・・・・・・・・
{x_(n-1)、x_(2n-1)}
各ペアから一方を選ぶやり方は
{y_1、y_2、・・・・・、y_(n-1)}
の部分集合(φも含める)と対応しており 2^(n-1) とおりある。
361:132人目の素数さん
13/09/01 05:07:42.87
>>351
〔補題〕1≦k≦n-1 とする。
{y_1、y_2、・・・・・、y_k} の部分集合(φも含める)について、要素の和をnで割ったときの余りを求めると、
(k+1) 種類以上ある。
(略証)
kについての帰納法による。
k=1 のときは φおよび{y_1} の2種があり、成立つ。
k-1 について成立つと仮定する。
{y_1、 ・・・・、y_(k-1)} の部分集合について、要素の和をnで割った余りを求め、
その集合を S_(k-1) とする。つまり、余りは #S_(k-1) 種類ある。
#S_(k-1) = n ならば命題は成立する。
#S_(k-1) < n ならば、上記の部分集合に y_k を加えたものを考える。
nで割った余りは同数{#S_(k-1) 種類}だが、
Sum{S_(k-1)~} = Sum{S_(k-1)} + y_k・#S_(k-1),
y_k ≠ 0 (mod n)、 #S_(k-1) ≠ 0 (mod n)、nは素数だから、
y_k・#S_(k-1) ≠ 0 (mod n)
S_(k-1) と S_(k-1)~ は要素の数は同じだが、内容は異なる。
∴ S_(k-1)~ には S_(k-1) にない要素がある。
S_k = S_(k-1) ∪ S_(k-1)~ ⊃ S_(k-1),
#S_k ≧ #S_(k-1) + 1, (略証終)
362:132人目の素数さん
13/09/01 05:14:53.83
>>351
∴ {y_1、y_2、・・・・・、y_(n-1)} の部分集合(φも含める)について、
要素の和をnで割った余りを求めると、n種類すべてを含む。
とくに -(x_1 + ・・・・・ + x_n) と同じ余りのものを含む。
∴ 和がnの倍数であるようなn個組の整数を取り出せる。
以上から、nが素数のとき、命題は成立する。
(2) nが合成数のとき。
nの素因数の一つをpとし、n=pmとする。
素数の場合と同様にして、n-1個の整数の中から、和がpの倍数であるようなp個組の整数を除去する。
これは2m-1回繰り返すことができる。
その結果、和がpの倍数であるようなp個組が2m-1組できる。{最後にp-1個が残るが}
これらp個組の和をpで割った値を {z_1, z_2, ..., z_(2m-1)} とおく。
帰納法の仮定により、これら2m-1個の整数から、和がmの倍数であるようなm個を取り出せる。
よって、和がpmの倍数であるような、pm個を取り出すことも可能。
(三重県 鳥居さんからの解答)
363:132人目の素数さん
13/09/01 05:18:22.66
>>351
(蛇足)
2n-2個の整数の中からn個を取り出してその和をnの倍数とすることは、一般には不可能である。
〔例〕{a,・・・・,a, a+1,・・・・,a+1} (各n-1個)
364:132人目の素数さん
13/09/05 17:47:37.29
任意の項数nの実数列には、単調増加または単調非増加な項数ceiling(√n)の部分数列があることを示せ。
ここで、ceiling(x)はx以上の整数の中で最小のものである。
365:132人目の素数さん
13/09/10 18:10:59.61
整数の数列 (a_1, a_2, …, a_n) で 1≦a_1≦2, 1≦a_2≦2a_1, …, 1≦a_(n-1)≦2a_n をみたすものの個数は、
整数N∈{0, 1, 2, …, 2^n-1} の 1, 2, 4, 8, …, 2^n-1 への分割の総数に等しいことを示せ。
例(n=2) #{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4)} = #{21, 2, 111, 11, 1, φ}
366:132人目の素数さん
13/09/10 19:01:04.73
>>365 訂正 (2行目2個目の 2^n-1 → 2^(n-1) )
整数の数列 (a_1, a_2, …, a_n) で 1≦a_1≦2, 1≦a_2≦2a_1, …, 1≦a_(n-1)≦2a_n をみたすものの個数は、
整数N∈{0, 1, 2, …, 2^n-1} の 1, 2, 4, 8, …, 2^(n-1) への分割の総数に等しいことを示せ。
例(n=2) #{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4)} = #{21, 2, 111, 11, 1, φ}
367:132人目の素数さん
13/09/16 15:53:06.39
>>335
一般にn_1,…n_mをどの2数も互いに素な2以上の自然数としたとき
これらの数について条件を満たすN=n_1+…+n_m-m+1面のサイコロを構成出来て
そのサイコロで出目がiとなる確率P(i)(0≦i≦N-1)は
P(i)=♯{(i_1,…,i_m)|0≦i_j≦n_j-1,i_1+…+i_m=i}/Π[k=1,m]n_k
で与えられることはわかった。
これが最小で一意だと思うが、それはうまく示せなかった。
368:132人目の素数さん
13/09/17 09:54:07.50
高校数学の質問スレPART356
スレリンク(math板:283番)
283 名前:132人目の素数さん[sage] 投稿日:2013/09/13(金) 07:57:15.03
凸八角形Kがある。Kの頂点のうち適当な3点を結んで三角形を作ると
その面積はKの面積の ( ア )分の1以上にできる。
アに当てはまる最小の自然数はいくらか。
これはどのように考えればいいのでしょうか。
こんな問題初めてです。分野さえ分かりません。
369:132人目の素数さん
13/09/17 10:17:23.36
正八角形で1,3,6番目の頂点を結んだ場合を考えて、3 ( > 8-4√2 ) だろうか
なお間違っている可能性がかなりある。眠いし
370:132人目の素数さん
13/09/18 08:12:17.52
>>368以下と解釈。
任意の凸八角形Kに対して、Kの頂点のうち3点を結んで作られる三角形のうち
その面積が最大となるものは、少なくともKの面積の ( ア )分の1以上である。
>>369の例で3は可能。
八角形の頂点を一つ飛ばしで選んだ四角形と、
この四角形に外接し、かつ、八角形を内包する四角形との
入れ子で上限を見積もってみたけど、4は無理そうな感じだな。
371:132人目の素数さん
13/09/18 11:17:35.51
正八角形なら3は可能ってだけじゃないの?
4を考えてる意味もわからん。
372:132人目の素数さん
13/09/23 12:00:00.03
最大の三角形をABCとする。
Aを通りBCに平行な直線とBを通りACに平行な直線とCを通りABに平行な直線で
できる三角形をDEFとすると
K<DEF=4ABC。
373:132人目の素数さん
13/09/23 12:57:54.63
日能研の問題から応用問題。
半径の和が自然数Nであり、それぞれ自然数の半径a,b,cを持ち、
互いに重ならない3つの円を考える。
(1) N=20のとき、3つの円の面積の和の最小値と最大値を求めよ。
(2) 3つの円の面積の和の最大・最小をNを用いて表現せよ。
なお、導出過程も記述せよ。
まあ、宮廷の大学入試レベルだな。
374:132人目の素数さん
13/09/23 13:10:09.07
どこが面白いのかさっぱりわからん
375:132人目の素数さん
13/09/23 13:34:00.05
書くのがかなりめんどい。というか俺はあきらめた。
受験生が「これなら分かるぞ」と思って解きはじめるが、
ごちゃごちゃしてきて投げてしまうパターン
376:132人目の素数さん
13/09/23 13:52:18.12
計算だけでやろうとするとゴチャゴチャするが
論理でやるとスッキリできる
377:132人目の素数さん
13/09/23 16:05:09.99
「論理でやる」とは?
378:132人目の素数さん
13/09/23 18:02:18.00
>>373
「自然数a,b,cがあり、a+b+c=Nとする。N=20の時、a^2+b^2+c^2の最大値と最小値を求めよ」
という問題と、本質的にどこが異なる?
なぜ、円が出てきて、互いに重ならないとかが出てくる?
問題に、記載されていない条件がなにか、抜けているのでは?
379:132人目の素数さん
13/09/23 18:40:34.41
>>378
Nの3に対する剰余で最大最小値が変わる
実数ならa=b=cで最大だが、自然数という制限が付いているからN=20の時には実現できない
380:379
13/09/23 18:45:47.24
すまん。何か勘違いしてた。
>>373とは別人です。
小学生向きの文章をそのまま改変したとか?
381:373
13/09/23 19:49:20.29
>>380
その通りです。日能研の文章をそのまま改変しただけ。
問題が面白くないor冗長なのはご愛嬌ってことで。
そういえば、日能研の文章には追加で、
最小となるa,b,cの組み合わせは何通りあるか、という問題もあったな。
どちらも、ガチャガチャ数え上げる計算しかできない小学生
にとっては、少し酷い問題だなと思ってしまった。
日能研の問題は数値をNに一般化すると、宮廷入試以上のレベルになる
ものが多い、という一例。
今回の回答の本質は>>379だね。最小は基本a=b=cだがNが3で
割り切れない場合の処理と、最大値の証明が大変。
正解は直感的に分かる人が多いが、それが正解だと示すのが面倒くさいので
後回しにされる問題だと思う。
382:132人目の素数さん
13/09/23 20:39:54.06
問題文が冗長はともかく、問題が面白くないのはご愛嬌とかスレタイ見ろよとしか言えないんだが。
383:132人目の素数さん
13/09/23 22:30:18.97
>>373
a^2 + b^2 = (1/2)(a+b)^2 + (1/2)|a-b|^2,
より、a+b が一定ならば、|a-b| の大きい方が大きい。
(最小)
もし a-b≧2 ならば、
(a-1)^2 + (b+1)^2 = (a^2 + b^2) -2(a-b-1)
≦ (a^2 +b^2) -2,
となるので、(a,b) は最小ではない。
∴ |a-b|≦1
同様にして |b-c|≦1、|c-a|≦1.
{a,b,c} = {q, q+1}
ただし、N = 3q + r, (0≦r<3)
q が 3-r 個、q+1 が r 個.
aa + bb + cc = (3-r)qq + r(q+1)^2
= 3qq +r(2q+1)
= ((3q+r)^2 -rr +3r)/3
= (NN + r(3-r))/3,
(最大)
{a,b,c} = {1,1,N-2} のとき
aa + bb + cc = (N-2)^2 + 2,
384:132人目の素数さん
13/09/24 22:44:30.99
>>373
つまり
最小値: π[ (NN+2)/3 ],
最大値: π((N-2)^2 + 2),
385:132人目の素数さん
13/09/25 23:15:26.07
一見問題が面白いと思えなくても解き方が面白いなら許せるが、これはどうだろうか。
386:132人目の素数さん
13/09/26 00:11:38.09
問題、解法、結果、全てがつまらんな
問題のための問題としか思えん
387:132人目の素数さん
13/09/26 22:00:00.28
a(b)≧a(b+1)(1≦b<N)=>a(b)≦N-b。
J=∑(2^(a(b)))。
388:132人目の素数さん
13/09/29 19:31:18.46
>>386
URLリンク(modernfart.jp)
389:132人目の素数さん
13/10/12 23:21:17.16
凹型五等辺五角形は無限個存在する。
一つの凹型五等辺五角形をある次元の空間上の一点で表すとして、
ちかい形同士は近くに置いて、
できるだけ形の対称性が点列配置の対称性に対応するとすると
それら全ての集合は何次元のどんな形になるか?
(数学の問題としては記述が不正確だけどそこは許して)
390:132人目の素数さん
13/10/13 03:29:31.73
辺の長さを1に固定すると、自由度は隣り合う角度で二次元
最後の点を半径1の円の2交点のうちどちらにとるかで2通り
2つの正方形平面から最後の点まで辺が届かない、辺同士が交差、凸型、の
3領域を除くことになりそう
391:132人目の素数さん
13/10/13 10:02:53.58
有名だけど
次のようなゲームを考える
プレイヤーと司会者がおり、プレイヤーの前には3つのドアがあり、その奥には当たりが1つ、ハズレが2つ用意されている。
プレイヤーがドアを1つ選択する(この時点では開けない)。
司会者は正解のドアを把握しており(これについてプレイヤーは承知している)、
残された2つのうちハズレのドアを1つ開ける(2つともハズレの場合はランダム)。
司会者は「今なら選択を変更して構いませんよ?」とプレイヤーに問いかける。
さて、このときプレイヤーは最初の選択を変更するべきか、否か。
392:132人目の素数さん
13/10/13 11:29:28.38
ドアを選択した時点で、当たりであってもハズレであっても
変更するかしないかで等確率1/2で当たりハズレがあるので
選択を変更してもしなくても当たる確率は同じ。
393:132人目の素数さん
13/10/13 11:38:49.14
正解のドアを把握している司会者がハズレを1つ教えることがポイント
394:132人目の素数さん
13/10/13 18:58:12.98
>>392
ちょっと俺と賭けをしないか?
395:132人目の素数さん
13/10/13 22:42:56.83
0から999の整数を、三次元格子点(x,y,z)と次のルールで対応付ける
xは100の位の数字、yは10の位の数字、zは1の位の数字
問題:
0から999までの整数から三つの素数を選び、それに対応する三つの三次元格子点を結ぶと
正三角形を成したという。そのような3素数の選び方のうち、もっとも大きな正三角形を
成す組み合わせは何か?
396: ◆2U88CDX3HuB9
13/10/14 06:12:38.99
ふむ…
397:132人目の素数さん
13/10/14 10:10:44.53
次の数列の□に当てはまる数はなんですか?
6 16 32 34 □
398:132人目の素数さん
13/10/14 11:06:13.95
881,991
399:132人目の素数さん
13/10/14 12:59:42.51
>>398 すべての正答を見つけただろうということは判る
400:132人目の素数さん
13/10/15 00:40:11.62
>>395
辺の長さって
{113, 131, 311} なら 2√2
{337, 373, 733} なら 4√2
{199, 919, 991} なら 8√2
てな具合?
401:132人目の素数さん
13/10/15 02:09:37.19
そうですよ
402:132人目の素数さん
13/10/17 02:54:05.34
>>391
モンティ・ホール問題ね
さすがに有名すぎ
403:132人目の素数さん
13/11/27 14:08:18.52
Σ[n=1~∞](n+m-1)Pm・(1-r)^n=m!/2r^m
を示せ
但しm∈N r∈Rで0<r<1
404:132人目の素数さん
13/11/29 20:03:24.93
>>403
与式を Q_m とおく。母関数は
Σ[m=0,∞) Q_m/m!・s^m
= Σ[m=0,∞) Σ[n=1,∞) P[n+m-1,m]/m! (1-r)^(n-1)・s^m
= Σ[m=0,∞) Σ[n=1,∞) C[n+m-1,m] (1-r)^(n-1)・s^m
= Σ[n '=0,∞) Σ[m=0,n '] C[n ',m] (1-r)^n '-m・s^m
= Σ[n '=0,∞) (1-r+s)^n '
= 1/(r-s)
= (1/r)/{1-(s/r)}
= (1/r)Σ[m=0,∞) (s/r)^m,
∴ Q_m = m!/r^(m+1),
405:132人目の素数さん
13/12/29 03:11:04.44
次の条件を満たす閉集合X[1],X[2],...と数列a[1],a[2],...は存在するか?
・各iについてa[i]は自然数でありX[i]はR^2内の正a[i]角形である
・ある有界集合Yがあって各iについてX[i]⊂Yとなる
・各iについてa[i+1]<2*a[i]
・各iについてX[i]⊂X[i+1]
406:132人目の素数さん
13/12/29 10:28:59.66
閉集合X[1],X[2],...は閉集合列X[1],X[2],...のこととして、さっぱりわからん
どこら辺がどう面白いのかが
407:132人目の素数さん
13/12/29 20:36:59.30
a[i+1]=a[i], X[i]=X[i+1] でいいだろ
408:謹賀新年
14/01/01 01:42:27.70
3つの皿に、それぞれいくつかの豆が入っている。
これらに対し、以下の1つの操作だけが許されている。
操作: 2つの皿を選びA,Bとする。
AからBに、きっかりBの個数分だけ豆を移す。
i.e. A,Bの豆をa個,b個(a≧b)としたとき、
AからBにb個の豆を移して a-b個, 2b個とする。
3つの皿の初期状態がどのような個数であっても、
この操作を上手く繰り返すことにより、いずれかの皿を
空にすることができることを示せ。
409:132人目の素数さん
14/01/02 06:11:35.70
質問させてもらいます。
試行回数をn、的中率をp、回収率をk%とすると、
真の回収率=k × (p ± 2×平方根((1-p)×p/n) )/p
※1と2の真の回収率はそれぞれいくつになるのでしょうか?
※1 試行回数485 的中率5.8% 回収率181.3%
※2 485 11.5% 123.9%
410:132人目の素数さん
14/01/03 11:01:08.09
>>405 >>406
たとえば…
a[i]=2^i+1、半径1の円をC[0]として、任意の自然数iについて
C[i-1]に外接する正a[i]角形を周とする領域をX[i]、X[i]に外接する円をC[i]とすると、
C[i]の半径r[i]は,r[i]=Π{k=1,i}cos(π/(2^k+1))と表せる。
これでi→∞としてr[i]が有限値に収束するなら、これがその例になる。
r[i]は対数を取るとlog(cos(π/(2^i+1)))のΣとなるので、それを適当に評価すればいい。
面倒なので以下略
411:132人目の素数さん
14/01/03 12:00:41.31
答えじゃなくて、どこが面白いのかわからんだけなのだが
412:132人目の素数さん
14/01/03 14:10:18.23
Πが無理数であることの証明って出来ます?
413:132人目の素数さん
14/01/03 15:09:37.38
πが有理数であると仮定すると超越数であることと矛盾
414:132人目の素数さん
14/01/17 23:00:17.08
その各桁の数の立方の和に等しいような数が。ちょうど4個ある。
それらはいくつか。
古典的名著、コンスタンス・レイド『ゼロから無限へ』(芹沢正三訳、
講談社ブルーバックス、1971)より。
415:132人目の素数さん
14/01/18 00:14:01.27
意味が取れない????
416:132人目の素数さん
14/01/18 00:34:16.34
そのような数はせいぜい4桁なので虱潰しで
417:132人目の素数さん
14/01/18 02:42:01.03
>>414
1, 153, 370, 371, 407 (自然数を十進法で表わしたとき)
418:132人目の素数さん
14/01/18 04:04:51.93
スレチかもしれないですがスレ立てできなかったので貼らせていただきます
数学の課題です、お願いいたします
次の(i)(ii)を満たすDnを求めよ
(i)lim Dn={(x,y)|x>0,y>0}
n→∞
(ii)lim ∬ (x-y)dxdy=2014
n→∞ Dn
ヒント
Dn{(x,y)|a <x<bn,c <y<dn}を予想して確かめる
n n
lim a =0=lim c lim b =∞=lim d
n→∞ n n→∞ n n→∞ n n→∞ n
419:132人目の素数さん
14/01/18 04:13:19.71
>>418
マルチポストはしない
既に質問スレがあるので個別の問題でスレ立てはしない
質問スレのテンプレを見て式を書き直せ
ここでの質問は取り下げて質問スレで親切な人を待て
420:132人目の素数さん
14/01/18 16:50:30.58
ろくに読みもしないで質問する奴って
よっぽど焦ってるんかな?
421:132人目の素数さん
14/01/18 16:57:33.71
続き
(4) その各桁の数の4乗の和に等しいような自然数が、ちょうど4個ある。
それらはいくつか。
(5) その各桁の数の5乗の和に等しいような自然数が、ちょうど3個ある。
それらはいくつか。
(6) その各桁の数のn乗の和に等しいような自然数がある。(n>5)
それはいくつか。
422:132人目の素数さん
14/01/18 17:04:52.39
>>421
(4) 1, 1634, 8208, 9474
(5) 1, 4150, 4151
(6) 1 (n>5 または n=2)
かな?
423:132人目の素数さん
14/01/18 17:13:28.88
嘘問題。
424:132人目の素数さん
14/01/19 00:00:00.38
0,1,4150,4151,54748,92727,93084,194979。
0,1,548834。
425:132人目の素数さん
14/01/21 00:00:00.19
0,1,1741725,4210818,9800817,9926315,14459929。
0,1,24678050,24678051,88593477。
0,1,146511208,472335975,534494836,912985153。
0,1,4679307774。
426:132人目の素数さん
14/01/21 11:40:37.94
4^10+6^10+7^10+9^10+3^10+0^10+7^10+7^10+7^10+4^10=4679307774
427:132人目の素数さん
14/01/22 00:00:00.41
0,1,32164049650,32164049651,40028394225,42678290603
,44708635679,49388550606,82693916578,94204591914。
0,1。
0,1,564240140138。
0,1,28116440335967。
0,1。
428:132人目の素数さん
14/01/23 01:38:33.94
nn+98=x(75-n)、あるいはnn+98が75-nで割り切れる時のnを求める解法
429:132人目の素数さん
14/01/23 07:08:02.28
nn+98=-(75-n)(75+n)+5723
430:132人目の素数さん
14/01/26 18:27:50.40
直角三角形があって、その周りの長さが60インチ、
斜辺へ下ろした垂線の長さが12インチあるとき、
それぞれの辺の長さは?
431:132人目の素数さん
14/01/26 18:38:08.83
15, 20, 25
432:132人目の素数さん
14/02/16 05:04:44.50
この極限を求めよ
URLリンク(i.imgur.com)
433:132人目の素数さん
14/02/16 05:27:15.70
x^4-2x^3+x^2-2=0
434:132人目の素数さん
14/02/16 09:53:23.77
>>432
2
435:132人目の素数さん
14/02/16 13:03:03.04
…が含まれている数値をxと置いていいの?
436:132人目の素数さん
14/02/16 15:45:08.31
丁寧にやる時は再帰的に与えるだろうけどここで気張ることもあるまい
437:132人目の素数さん
14/02/16 16:20:46.03
…(√2+(√2+(√2+…
って外にも点々が続いてたら?
438:132人目の素数さん
14/02/16 16:44:00.60
そんな式を考えた奴が出てきたらそいつに確かめればよい
439:132人目の素数さん
14/02/16 17:15:06.36
漸化式でやろうとしたら
a(n+1)^2=2+a(n)で詰んだ
これ一般項出せるの?
440:132人目の素数さん
14/02/16 17:23:30.45
そもそもその数、n重の根号無しには表せんだろう
441:132人目の素数さん
14/02/16 17:29:42.55
一般項を知らなくても、初項を正の数とすれば2に収束することはわかる
442:132人目の素数さん
14/02/16 18:22:32.76
a(n)=√(2+√(a(n-1))
443:132人目の素数さん
14/02/16 23:51:56.00
丁寧に議論するなら
①漸化式から、有界と単調を言う
②もし収束するならば、x^2=2+xを満たすxに収束する
ことを言えばよい
444:132人目の素数さん
14/02/17 00:20:50.88
やっぱり挟み撃ちか
445:132人目の素数さん
14/02/17 02:49:33.00
URLリンク(i.imgur.com)
なぜこうなる?
446:132人目の素数さん
14/02/17 07:47:10.87
お前の書く式の順番が意味分からんその理由から説明しろww
447:132人目の素数さん
14/02/17 11:16:34.47
>>445
左側のやり方で考えるなら、1/5が1より小さいことを考慮していないから間違えている。
右側のやり方についてはいったい何がわからんのかわからん。
448:132人目の素数さん
14/02/18 02:48:03.06
>>439
a_n=2cos(Θ_n) ,Θ_(n+1)=(Θ_n)/2
449:132人目の素数さん
14/02/18 08:05:42.80
同じ式から左右で違う式展開をやって、
なぜ結果が異なるかっていう質問だったのか。
450:132人目の素数さん
14/02/21 01:20:47.44
x軸上の点(a,0)を中心とする半径r(r>0)の円が放物線y=x^2に接しているという。
aとrの関係を求む
451:132人目の素数さん
14/02/21 03:14:55.58
>>450
(放物線の接線の方程式と円の中心との距離)=r を、といたらいけそうだね
452:132人目の素数さん
14/02/21 04:00:00.33
16(a^2-r^2)^3+a^4-20a^2r^2-8r^4-r^2=0。
453:132人目の素数さん
14/02/21 06:59:09.01
>>451
いやいや^^;
454:132人目の素数さん
14/02/21 17:53:12.86
放物線y=x^2の(x,y)における接線は(0,-x^2)を通る
455:132人目の素数さん
14/02/26 06:08:30.64
2^a - 3^b = 1 をみたす自然数解の組 (a、b) をすべて求めよん。
456:132人目の素数さん
14/02/26 16:08:28.61
>>455
3^b≡1,3(mod 2^3)
よって(a,b)=(2,1)のみ
457:132人目の素数さん
14/02/26 20:00:22.12
2^a - 3^b = -1 をみたす自然数解の組 (a、b) をすべて求めよん。
458:132人目の素数さん
14/02/26 22:08:42.57
>>457
(log 3)/(log 2)の連分数展開より
(a,b)=(1,1),(3,2)以外に存在したとしても、人類の手には負えないものと思われる
459:132人目の素数さん
14/02/26 22:32:27.97
タオは使わんでもなんとかなる
460:132人目の素数さん
14/02/27 07:45:50.44
f(b)=3^b-1
f(b)=3*f(b-1)+2
461:132人目の素数さん
14/03/04 20:19:21.37
今年の一橋大学の数学第1問には感心した。
解答をまだ見ていない人、楽しめること請け合いまっせ。
a-b-8とb-c-8が素数となるような素数の組(a,b,c)をすべて求めよ。
462:132人目の素数さん
14/03/04 21:03:44.22
こういう整数問題を第1問に出されたら結構焦りそう
d=a-b-8,e=b-c-8とする。
また、pをある奇素数とする。
d=2のとき
e=2のとき
a,b=a-10,c=a-20は3で割った余りが異なる3つの数なので、
いずれか1つは3の倍数。
全て素数だから、この中で最小のc=3
このときb=13,a=23となって条件を満たす。
e=pのとき
b-c=8+p(奇数)より、b,cの偶奇は異なる。
b>cかつcは素数なのでc=2
このとき a=20+p, b=10+p
p≠3のとき、a,bのいずれか一方が6以上の3の倍数となるため不適。
よってp=3であり、a=23,b=13
d=pのとき
a-b=8+p(奇数)より、a,bの偶奇は異なる。
a>bかつbは素数なのでb=2
このときc=-6-e<0となって不適。
答 (a,b,c)=(23,13,3),(23,13,2)
463:132人目の素数さん
14/03/04 21:30:12.88
殆どの受験生は何が手がかりかも掴めずに途方に暮れただろうな。
理詰が好きな子は楽しんで解いたか。
464:132人目の素数さん
14/03/05 01:45:49.26
こういう手探りで解いていく問題大好き
465:132人目の素数さん
14/03/05 06:58:08.90
問題の発想はどこからだろ。
デザインとか符号理論?
466:132人目の素数さん
14/03/05 21:14:40.12
これa-bとb-cでも問題成り立つな
8という数に特に意味はなさそうだ
467:132人目の素数さん
14/03/05 21:57:16.74
>>439
・|a(1)| ≦ 2 のとき、
a(n) = 2cos(α/(2^n)),
ここに、cos(α/2) = a(1)/2,
・|a(1)| ≧ 2 のとき
a(n) = 2cosh(β/(2^n)), (n>1)
ここに、cosh(β/2) = |a(1)|/2,
468:132人目の素数さん
14/03/05 22:49:53.76
>>466
組の数を有限にするのには役にたっているかな。
469:132人目の素数さん
14/03/05 22:55:27.27
>>468
全て求め切ったと分らせるのには役に立っている、と言うほうがいいか。
470:132人目の素数さん
14/03/06 23:48:47.65
今年の東大の第四問がおもしろい
試験会場では解ききれなかったが、数Ⅲのかなり深い所を聞いてきている
第四問
f(x)=(1-p)x+(1-x)(1-e^(-qx)) 0<p<1,p<q
(3)f(c)=c,0<c<1となるcが存在することを示せ
471:132人目の素数さん
14/03/06 23:54:21.69
良く練られた問題とは思うが、別に面白くも何ともない
472:132人目の素数さん
14/03/07 00:35:47.17
>>470
y=f(x)とy=xの交点が0<x<1の範囲にあることを示せばいい
おもしろいのはどの部分?
473:132人目の素数さん
14/03/07 01:05:30.19
それ単なる言い換えやん
474:132人目の素数さん
14/03/07 07:48:41.83
だ、か、ら、おもしろいのはどこだ、と聞いている
475:TheLastManStudying
14/03/07 20:15:34.50
最後のゆとり世代には、中間値定理が面白いのか。
来年は大変だな、気の毒に。
476:132人目の素数さん
14/03/08 08:00:52.34
今年の東大は第四問以外がつまらなさすぎたから、かえって第四問が面白く感じた
477:132人目の素数さん
14/03/08 08:36:15.74
今年の現役生は相当頭が悪い
中間値定理を知ってはいるが使える奴はほとんどいない
中高一貫の進学校でもこの現状
478:132人目の素数さん
14/03/08 09:16:09.47
読み流していたが、中間値定理が出るということは、
これは理系の試験だ!
東大理系二次で、こんな問題が出る時代になったのか。
少子化というのは、恐ろしいな。
479:132人目の素数さん
14/03/08 09:22:36.81
うるせえ!
480:132人目の素数さん
14/03/08 09:34:08.95
お前らゆとり貶して優越感浸るの好きだな
481:132人目の素数さん
14/03/08 09:37:55.43
で、どこがどう面白いの?
482:132人目の素数さん
14/03/08 09:56:10.69
改めて考えると全然面白い問題じゃなかった
ゆとり脳でした
ごめんなさい
483:132人目の素数さん
14/03/08 10:05:08.13
今年の2番の冒頭では
自然数(すなわち1以上の整数)
と記述してある。
おおっと思ったよ。「すなわち」だもんな。
0は自然数ですか、という連綿と続く遣り取りに業を煮やしたのかもしれない。
さて、これが「受験数学における自然数」の約束事に昇華するかどうか、興味深い。
484:132人目の素数さん
14/03/08 10:06:39.14
数学パズルとして面白い問題ではないってだけで
中間値の定理を面白いと感じたなら良いことだ
485:132人目の素数さん
14/03/08 10:32:29.74
ゆとりをなめんな
【サッカー/なでしこ】アルガルベカップ 日本、デンマークに1-0勝利! 岩渕の先制ゴールを守り今大会初白星[03/08]
スレリンク(mnewsplus板:120番)
486:132人目の素数さん
14/03/08 10:34:15.47
120 名前:名無しさん@恐縮です[] 投稿日:2014/03/08(土) 01:29:52.55 ID:ivRovwLWI
>>103
我が国については、国際的に最上位レベルにある子どもの学力と対照的に、大人の理解度は下位に位置しており、極めて特徴的である。
我が国では、(略)、関心の低い大人の影響で子どもの関心が低下する(平成18年版 科学技術白書)
ユトリ世代 2位/25カ国
大人 22位/25カ国
URLリンク(www.mext.go.jp)
ユトリは成人力調査でも高い学力を持っているとわかりました
487:132人目の素数さん
14/03/08 13:31:11.47
いつまで「ゆとり」ネタに頼ってんだ?
488:132人目の素数さん
14/03/08 15:15:00.55
「ゆとり」は、もう終わるが、
少子化は、益々悪化してゆく。
学校を減らさなければ、
教育水準の低下は止められない。
489:132人目の素数さん
14/03/09 01:16:53.62
減らさず全部で少数精鋭やれば低下せんだろ
490:132人目の素数さん
14/03/09 02:09:28.44
もっと問題を
491:132人目の素数さん
14/03/09 17:38:08.61
次の極限を求めよ:
Σ(n=1~∞)√(n)*e^(-n)
492:132人目の素数さん
14/03/09 20:00:31.35
極限?
493:132人目の素数さん
14/03/09 20:15:26.46
ごめん
極限値といえばいいのかな?
494:132人目の素数さん
14/03/09 20:17:45.63
Σ(n=1~∞)
ここの意味がよくわからんけど?
495:132人目の素数さん
14/03/09 20:46:52.60
何度もごめんなさい
lim_[N→∞]Σ(n=1~N)√(n)*e^(-n) の値を求めて欲しい
ということです
496:132人目の素数さん
14/03/09 22:28:55.76
つまり無限級数でしょ?
497:132人目の素数さん
14/03/09 22:30:34.00
なんでそんな基本的な表記の事で突っかかってんのか、わからんわ
498:132人目の素数さん
14/03/10 08:34:08.54
いや、こういう表記あんまり見ないからさ
何か特殊な意味とか有るのかなと思って
499:132人目の素数さん
14/03/10 11:19:17.87
>>498
普通に見ますが
500:132人目の素数さん
14/03/10 13:20:04.91
ただの無限級数を極限とか書くからさ
501:132人目の素数さん
14/03/10 13:21:26.25
>>499
>【掲示板での数学記号の書き方例】
>URLリンク(mathmathmath.dotera.net)
>●数列和・数列積:Σ_[k=1,n]a(k), Π_[k=1,n]a(k) (← "Σ"は「しぐま」,"Π"は「ぱい」で変換可.)
>●極限:lim_[x→∞]f(x) (← "∞"は「むげんだい」で変換可.)
少なくとも君の使った表記法を知らないからといって責められることではないね
502:132人目の素数さん
14/03/10 13:21:50.89
どうでもいいことグダグダいってんなよ
503:132人目の素数さん
14/03/10 13:26:42.26
なんでそんな基本的な表記の事で突っかかってんのか、わからんわ
"突っかかってんのか"、わからんわ
504:132人目の素数さん
14/03/10 13:32:04.62
Z会の天才問題集より
URLリンク(i.imgur.com)
505:132人目の素数さん
14/03/10 15:53:46.95
1.640205705728237058203865285315382948349514749938706030136522526234759357847017216022108728859728527 +
1.361230730112066360252141136119566081774341077796194978801633686001519877697193958458861004952824615 I
506:132人目の素数さん
14/03/10 19:21:12.19
数学板なのに>>491や>>504にまともに答えられる人はいないの?
507:132人目の素数さん
14/03/10 19:30:14.32
>>506
あなたはそれら両方の出題者?
508:132人目の素数さん
14/03/10 19:53:37.98
表記の意味を尋ねても答えてくれないので
問題の解きようがありません
509:132人目の素数さん
14/03/10 19:56:05.39
>>501を見る限り、意味を理解しながら嫌がらせしてるようにしか見えないけど
510:132人目の素数さん
14/03/10 20:25:49.59
>>506
面白くないんじゃないの
511:132人目の素数さん
14/03/10 20:48:59.89
>>509
結局、無限級数をあらわしてるってことでいいの?
512:132人目の素数さん
14/03/10 22:37:02.40
491の出題者ですが、ただ無限級数の値を求めて欲しいということだけです
513:132人目の素数さん
14/03/11 01:18:49.42
504の答えは[5/2-{187^(1/3)}/2]^(1/3)≒- 0.710877で合ってる?
514:132人目の素数さん
14/03/11 01:21:55.98
アスペがうるさいスレ
515:132人目の素数さん
14/03/11 01:25:56.20
間違えた
[5/2-{189^(1/3)}/2]^(1/3)=[5/2-3/2*7^(1/3)]^(1/3)≒0.71751
516:132人目の素数さん
14/03/11 01:38:48.42
>>504
もっと問題を出せよ!
517:132人目の素数さん
14/03/11 02:07:53.70
>>515
ちがうよ
518:132人目の素数さん
14/03/11 08:42:58.06
a=cos(2π/7),b=cos(4π/7),c=cos(8π/7),α=a^(1/3),β=b^(1/3),γ=c^(1/3),
s=α+β+γ,t=αβ+βγ+γα,x=s^(1/3)とおく
a+b+c=-1/2,ab+bc+ca=-1/2,abc=1/8
↓
s(ss-3t)=-2,2t(2tt-3s)=-5
↓
4xxx-30xx+75x+32=0
s=x^(1/3)=[5/2-3/2*7^(1/3)]^(1/3)
519:132人目の素数さん
14/03/11 08:44:37.02
間違えた
a=cos(2π/7),b=cos(4π/7),c=cos(8π/7),α=a^(1/3),β=b^(1/3),γ=c^(1/3),
s=α+β+γ,t=αβ+βγ+γα,x=s^3とおく
a+b+c=-1/2,ab+bc+ca=-1/2,abc=1/8
↓
s(ss-3t)=-2,2t(2tt-3s)=-5
↓
4xxx-30xx+75x+32=0
s=x^(1/3)=[5/2-3/2*7^(1/3)]^(1/3)
520:132人目の素数さん
14/03/11 09:02:04.34
流石にこれは酷いのではないか。
これを放置するのが、最近の管理方針か?
521:132人目の素数さん
14/03/11 09:03:11.38
>>504
a=cos(2π/7), b=cos(4π/7), c=cos(8π/7)
a+b+c=-1/2
ab+bc+ca=-1/2
abc=1/8
522:132人目の素数さん
14/03/11 14:35:44.48
放置で充分だろ
523:132人目の素数さん
14/03/11 17:09:19.60
なんか問題でもあるのか?
524:132人目の素数さん
14/03/11 18:41:34.25
放置以外に有効策があるなら列挙してくれ
話はそれからだろう
525:132人目の素数さん
14/03/11 19:58:57.97
>>519 の補足
s(ss-3t) +3u = a+b+c = -1/2,
ttt -3stu +3uu = ab+bc+ca = -1/2,
u = (abc)^(1/3) = 1/2,
より
sssu - ttt = 1/4,
したがって
sss = [5 - 3・7^(1/3)]/2,
ttt = [4 - 3・7^(1/3)]/4,
526:132人目の素数さん
14/03/12 17:48:54.13
xy平面上において
(k-1,0)と(k,0)とを結ぶ経路(k=1,2,…,n)
(k-1,1)と(k,1)とを結ぶ経路(k=1,2,…,n)
(k,0)と(k,1)とを結ぶ経路(k=1,2,…,n)
を考える
各経路はそれぞれ1/2の確率で閉鎖される
このとき,(0,0)から出発して(0,1)へ行ける確率を求めよ
527:132人目の素数さん
14/03/12 17:57:01.28
経路が閉鎖されたらジャンプして行けばいいので、求める確率は1
528:132人目の素数さん
14/03/12 18:31:53.05
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。ひんがら目気色悪すぎこっち見んな死ね。
529:132人目の素数さん
14/03/12 18:34:43.87
527がドヤ顔で俺マジウケるレス返したわーと思っている確率なら1だろうな。
530:132人目の素数さん
14/03/12 18:42:39.82
ポエムにマジレスされて涙目wwwww
531:132人目の素数さん
14/03/12 20:35:32.97
lim_[N→∞]Σ(n=1~N)√(n)*e^(-n)
を求めよ
532:132人目の素数さん
14/03/12 21:03:38.76
ぞれじゃフォーマット厨は満足しないぞ
533:132人目の素数さん
14/03/12 23:22:42.96
>>531の値は求まるの?
∫[0,1]e^(-x^2)dxとかが出てきたんだけど
534:132人目の素数さん
14/03/13 14:46:46.98
それぐらいできるだろ
535:132人目の素数さん
14/03/13 17:50:46.50
>>534
e^(-x^2)の原始関数って初等関数で表せられないんでしょ?
それじゃ∫[0,1]e^(-x^2)dxの値は求まらないじゃん