【ガイガー】インスペクター+統計スレat RADIATION
【ガイガー】インスペクター+統計スレ - 暇つぶし2ch2:名無しに影響はない(やわらか銀行)
12/04/06 14:40:46.51 v2XDOnI2
R関係の統計処理のリンク集をコピー。主に使っているのが、青木さんの所なので、青木さんが主体。

群馬大学 青木 R による統計処理
URLリンク(aoki2.si.gunma-u.ac.jp)

プログラム R の入手方法とコンピュータへのインストール
URLリンク(aoki2.si.gunma-u.ac.jp)

新たに定義した関数
URLリンク(aoki2.si.gunma-u.ac.jp) をDown load
起動直後に「>」が表示されたらばその後に「source("URLリンク(aoki2.si.gunma-u.ac.jp)", encoding="euc-jp") 」と入力する。「Rcmder」と同時には使用できないので要注意。


分散比の検定。等分散か異分散かで検定方法が異なるので分散を調べる。正規分布の場合に限って使用可能。
URLリンク(aoki2.si.gunma-u.ac.jp) 二群の等分散性の検定(二次データ)
URLリンク(aoki2.si.gunma-u.ac.jp) 二群の等分散性の検定
URLリンク(aoki2.si.gunma-u.ac.jp) 多群の等分散性の検定

平均値の差の検定
URLリンク(aoki2.si.gunma-u.ac.jp) 2群正規分布の場合
URLリンク(aoki2.si.gunma-u.ac.jp) 2群一山分布の場合
URLリンク(aoki2.si.gunma-u.ac.jp) 分散分析(3群以上、正規分布の場合)

3:名無しに影響はない(やわらか銀行)
12/04/06 14:41:31.67 v2XDOnI2
度数分布
URLリンク(aoki2.si.gunma-u.ac.jp) 度数分布表の作成
URLリンク(aoki2.si.gunma-u.ac.jp) 正規分布用適合度の検定
URLリンク(aoki2.si.gunma-u.ac.jp) 正規確率紙への作画

にちゃんねる内
URLリンク(ikura.2ch.net) シミュレーション@2ch掲示板
スレリンク(sim板)l50 【junk.test】雑談専用【try会議室】
URLリンク(uni.2ch.net) 数学@2ch掲示板
スレリンク(math板)l50 【R言語】統計解析フリーソフトR 第4章【GNU R】

4:名無しに影響はない(栃木県)
12/04/07 10:37:20.42 Pgo0PdnY
ガイガーカウンターで食品計測 関連テンプレ
URLリンク(hakarukun.go.jp) 身近にある食品からの放射線-「はかるくん」を使った40K等からのγ線測定-
URLリンク(www.potetokaitsuka.co.jp) サツマイモを測定することができるw
URLリンク(ameblo.jp) ベータ線を測定してみましょう
URLリンク(www.mhlw.go.jp) シンチ向け 急時における食品の放射能測定マニュアル(厚生労働省)
URLリンク(www.kankyo-hoshano.go.jp) GM向け 全ベータ放射能測定法 (下ごしらえ)
URLリンク(www.kankyo-hoshano.go.jp) RI 核種一覧のサイト The Berkeley Laboratory Isotopes Project's Exploring the Table of Isotopes
URLリンク(ie.lbl.gov) アルミ中のβ線の飛距離の計算サイト。
URLリンク(www.sky.sannet.ne.jp)
URLリンク(www.geocities.co.jp) 家庭内食品の乾燥
URLリンク(search.kankyo-hoshano.go.jp) 環境放射線データベース
URLリンク(www.kobejyukou.com) ドラフトの例
URLリンク(www.yamato-net.co.jp) 理化学機器販売店
URLリンク(www.tgk.co.jp)  理化学機器販売店
URLリンク(www.sia-japan.com)  理化学機器販売店
URLリンク(www.advantec.co.jp)  理化学機器販売店
URLリンク(staff.aist.go.jp) 計算の論理
URLリンク(atlas.shinshu-u.ac.jp) 計算の論理
URLリンク(edycube.blog2.fc2.com) 周波数カウンタにおける1カウントの誤差について
URLリンク(www.mext.go.jp) 食品成分表
URLリンク(www.beejewel.com.au) フリーのMCAソフト
スレリンク(lifeline板:7-13番) (京都府)って?
スレリンク(lifeline板:973番) (京都府)って?
スレリンク(lifeline板:980-981番) (京都府)って?
URLリンク(www.amazon.co.jp) ドライフルーツ用乾燥機
URLリンク(www.kankyo-hoshano.go.jp) 福竜丸の頃の水道水の分析方法
URLリンク(www.snap-tck.com) 統計学
URLリンク(www.mikage.to) 計測値をそのまま入力すると計算してくれるサイト
URLリンク(www.kankyo-hoshano.go.jp) 「可食部」を検査することの規定
URLリンク(www.jrias.or.jp) 「緊急時における食品中の放射性セシウム測定に用いるNaI(Tl)シンチレーションサーベイメータの機器校正」
URLリンク(okwave.jp) 鉛対策
URLリンク(www.n-hakko.com) 灰化
URLリンク(ci.nii.ac.jp) 高温灰化による消失
URLリンク(www.jrias.or.jp) 低温灰化による消失
URLリンク(pub.maruzen.co.jp) 実験化学講座
URLリンク(www.amazon.co.jp)

(正・続)実験を安全に行うために
URLリンク(www.jrias.or.jp) 日本アイソトープ協会の資料
URLリンク(hp.vector.co.jp) ブラウザで動く放射線・放射能の単位換算ツール

5:名無しに影響はない(栃木県)
12/04/07 10:43:40.08 Pgo0PdnY
金属による線種の分離方法。光子(γ線とX線)用は、アルミ0.6mm、プラスチック2.4mm。
URLリンク(www.rada.or.jp)
管理図
URLリンク(avalonbreeze.web.fc2.com)
四分位数とヒンジ
URLリンク(anchoret.seesaa.net)
放射線測定器の測定値の平均差の計算ツール
URLリンク(www.mikage.to)
【junk.test】雑談専用【try会議室】(シミ板)。昔は色々あったけど、今は桂カルク(だと思うけど栃木が使っているの)のみ
スレリンク(sim板)l50
検出限界の考え方
URLリンク(ax00.web.fc2.com)
心理統計学。文系の方向け統計学。SAS使用
URLリンク(www.aichi-gakuin.ac.jp)
統計学自習ノート。ネットでは有名な群大の青木さん。R使用
URLリンク(aoki2.si.gunma-u.ac.jp)
栄養素別食品一覧
URLリンク(www.eiyoukeisan.com)
放射線測定実験要領書 (ガンマ線に関する基本的な事項, 線量率の測定, γ線の物質による遮へい測定)
URLリンク(radonet.servebbs.net)
体内を構成する原子とγ線との 相互作用。人体を水と近似してγ線の吸収量を計算
URLリンク(www.ip.k.hosei.ac.jp)
(6)検出器シミュレーション。上記計算用セシウムの定数が記載されている
URLリンク(www.nirs.go.jp)
>線源:137Cs (662keV) 線減弱係数:0.54 cm-1
全β線測定法
URLリンク(www.kankyo-hoshano.go.jp)
福竜丸の灰の分析
URLリンク(home.hiroshima-u.ac.jp)
具体的操作は、化学便覧の分析化学の章の「スポットテスト」
URLリンク(pub.maruzen.co.jp)
前スレで、個別機種情報を除いて拾った範囲。
抜けがあったらば追加ヨロ。

6:名無しに影響はない(栃木県)
12/04/07 10:44:39.90 Pgo0PdnY
URLリンク(gakuen.gifu-net.ed.jp) 高校生向け食品の灰分の分析方法。
URLリンク(www.shouhiseikatu.metro.tokyo.jp) 環境計量証明事業登録の手引き。政府の通達で「乾燥する」とか「(質量を)計る」とかのときに使用する機器
は、これを参照。
URLリンク(www.tokutoku.to) 放射能遮断BOX 鉛10ミリで重さ32キロ 128000円なり
URLリンク(space.geocities.jp) Radiで食品測れるかな--
URLリンク(www.emf-japan.com) 個人で用意出来る遮蔽環境
URLリンク(tng.sub.jp) 米国をあきれさせた日本の化学力をおしえたる (化学処理によるセシウムの分離)
URLリンク(www.rokakuho.co.jp) 米国をあきれさせた日本の化学力をおしえたる (化学処理によるセシウムの分離)
URLリンク(www.jrias.or.jp) 低レベル・超低レベル放射能測定の基礎 (鉛から出る放射線対策)

7:名無しに影響はない(栃木県)
12/04/07 10:45:43.77 Pgo0PdnY
スレリンク(radiation板)
インスペクター系総合 2【Plus,Alert】より、関係しそうな内容を抜粋。

スレリンク(radiation板:103番)
103:退避(群馬県):2011/12/06(火) 22:35:29.39 ID:tnNiekf2
 300cpm=1.1Bq/cm2

流れの可視化技術のまとめ 石井幸治(九州大学) 室内(放射性)粉塵の動きを見当
URLリンク(www.riam.kyushu-u.ac.jp)
放射線の遮へい (08-01-02-06) β線が紙で遮蔽できない
URLリンク(www.rist.or.jp)
原発事故で飛散した主な核種
URLリンク(savechild.net)
日本分析センター ストロンチウム90の分析
URLリンク(www.jcac.or.jp)


スレリンク(radiation板)
インスペクター系総合 3【inspector+,Alert】より、関係しそうな内容を抜粋。

福島第一原発から飛散した主な放射性同位体(核種)全31種・放出量
URLリンク(savechild.net)
ポアソン分布
URLリンク(ja.wikipedia.org)
直線関係式(Deming法)と回帰分析 (香川大学医学部検査部)
URLリンク(www.kms.ac.jp)
最小二乗法による回帰直線と相関係数の求め方-回帰分析と相関分析の基礎- (早稲田大学大河内研)
URLリンク(www.okochi.env.waseda.ac.jp)
放射線計測-計数の統計- (東京理科大学 理学部 物理学科)
URLリンク(www.rs.kagu.tus.ac.jp)
放射線崩壊の確率的性質 (広島大学物理学科)
URLリンク(home.hiroshima-u.ac.jp)
求積等
URLリンク(keisan.casio.jp) 円錐台
URLリンク(www.benricho.org) 円柱


簡単!栄養andカロリー計算
URLリンク(www.eiyoukeisan.com)
カリウムの多い食品と、食品のカリウムの含有量一覧表
URLリンク(www.eiyoukeisan.com)
やさしお (三重大学 奥村晴彦)
URLリンク(oku.edu.mie-u.ac.jp)

取扱説明書(英文)
URLリンク(seintl.com)

Rの使い方(文系用)。
URLリンク(www.e.okayama-u.ac.jp) (岡山大学 長畑ビジネス統計解析)
URLリンク(www.e.okayama-u.ac.jp)

このスレの作成の理由
スレリンク(radiation板:349番)
349 :名無しに影響はない(やわらか銀行):2012/04/06(金) 14:38:37.93 ID:v2XDOnI2
栃木さん新スレ作りました。統計学の先生がんばってください。

【ガイガー】インスペクター+統計スレ
スレリンク(radiation板)


8:名無しに影響はない(やわらか銀行)
12/04/07 19:39:43.61 D2t0m6X+
簡単に食品を測りたい人向け:
トータルタイマーでバックグラウンド数値を5分測る。
トータルタイマーで食品の表面や切断面を5分測る。
差があれば汚染していると考えて捨てる。
μSV表示で測定しても汚染はわからない。トータルタイマーで測ること。

9:名無しに影響はない(やわらか銀行)
12/04/07 19:49:11.04 D2t0m6X+
わかめや昆布にはカリウムが多く含まれている。
中国産わかめと三陸産わかめを比較してみればわかる。
比較して数値が高ければ、カリウム以外にセシウムやストロンチウムが入っている。
カリウムの多い東日本の食品にはセシウムが入っている可能性が高い。
ストロンチウムにも要注意。行政は一切ストロンチウムを測っていない。(ストロンチウムはβ線のみをだすため)

10:名無しに影響はない(やわらか銀行)
12/04/07 19:55:36.51 D2t0m6X+
福島第一原発から飛散した主な放射性同位体(核種)全31種・放出量
URLリンク(savechild.net)
αアルファ線(プルトニウム238,240,239,241)
βベータ線(セシウム137 ストロンチウム89,90 テルル、セリウム、ルテニウム)
γガンマ線(セシウム134、ヨウ素)

11:名無しに影響はない(やわらか銀行)
12/04/07 20:01:55.66 D2t0m6X+
セシウム汚染地図
URLリンク(savechild.net)

EUが輸入規制している都道府県食品(つまり食品が汚染している)
福島、群馬、茨城、栃木、宮城、静岡、長野、山梨、埼玉、東京、千葉、神奈川

フランス核廃棄物処理施設 セントラコ
15.75ベクレル/kgで低レベル放射性廃棄物にて厳重管理

12:名無しに影響はない(栃木県)
12/04/08 10:22:45.08 UM3uS8YD
セレストかかってないよね。んじゃえーけ(方言、意味わかる人解説して)。

まずは、過去のおさらい。「行政はβ線を測定していない」
インスペクターはβ線測定を特長とする測定器なので、β線を主に測定することになります。
つまり、γ線測定による正確な値とは異なります。

1.緒言。
(2)ベータ線(電子線、陽電子線)
 放射性同位元素のベータ崩壊のさいに放出されるベータ線は、0から最大エネルギーまでの連続スペクトルである。
ベータ線のエネルギーとは最大エネルギーをいう。ベータ線の飛程は荷電重粒子線ほど明確でない。
そこで、一種類のベータ線を放出して崩壊する崩壊エネルギー既知の核種を用いて、飛程とエネルギーの関係を求める。
URLリンク(www.rist.or.jp))

電子を対陰極で急激に制動させたり、磁場により運動方向を変更したりするなどの加速度運動をするとX線が放射され(制動放射)、
制動X線と呼ばれる。特定のスペクトルを示さないので、白色X線と言われる。
(URLリンク(ja.wikipedia.org))
白色X線のスペクトルは
URLリンク(sts.kahaku.go.jp)
の図2.1参照(昔の高校の物理の教科書には載っていたけど、今教えてんかな)。
インスペクターのγ線の感度はあまりよくないし、はかるくんあたりのほうがγ線を検出するには適している。
つまり、制動X線(50keVまで検出可能)が検出されない程度(検出されているといえない程度)まで遮蔽できれば
測定には影響が出ないだろう、ということで、プラスチックによる最低限必要な遮蔽厚さを求めた。
β線の減衰は、原子核付近を通った回数に比例する(白色X線の発生原理参照)ので、原子番号が近い原子はほぼ同じ原子として取り扱うことができる。
食品の主成分は、炭水化物・脂質・たんぱく質である。脂質は炭化水素、炭水化物は水と炭素、たんぱく質は炭化水素に多少の窒素が結合したものと、元素の組成を近似できる。
つまり、プラスチックと乾物の元素組成を近似できるから、汚染が少ないと思われる中国産CDケースを使用して、食品によるβ線遮蔽の程度を予測することを目的とした。
「一般閲覧用ではない歯科医師向け情報」
URLリンク(www.oralstudio.net)
として勿体づけているけど、広告・関連情報・用語を除くと、高校生(向け副読本)程度なので、X線の説明として載せます。

2.実験方法。
線源: 5円玉の穴の中にやさしおを充填し紙製シールで密封したもの。これをCDケースの中に入れて机の上に固定した。
検出部: マンテンの棚用の鋼材を井桁に組み、インスペクターを置くと下に約3cmの空間がとれるようにした。
インスペクターは汚染を防ぐために常に食品用ポリ袋の中に保管した。
遮蔽材: 中国産CDケース。厚さ約1mmのプラスチック製。
3.実験結果。
スレリンク(radiation板:332-334番)
やさしおで作成した線量を遮蔽するのに必要なプラスチックの分量は CDケース2枚であり3.15*2+1=7.3mmとなる。
4.考察。
元素数に比例してβ線の減衰がおこると近似できるから、遮蔽に必要な厚さの1/2の厚さに含まれるβ線核種から出たβ線はすべて検出部に到着でき、
それ以上の距離を移動してくるβ線はすべて遮蔽される、と近似できる。
検出部の直径が50mmで密着している場合、半径2.5cm、高さ3.65mmの円柱内に存在する核種からの放射線をすべて検出可能と近似できる。
実際には、底辺2.865cm上辺2.5cmの円錐台になるであろうが、以後の測定は、計算の簡便性を優先するために、円柱と近似する。

13:名無しに影響はない(栃木県)
12/04/08 15:11:43.82 UM3uS8YD
バソコンを置いてある部屋の大気(2012.03.26日夕方から翌日にかけて)を測定したもの。
ただし、窓に押し付けてある棚にインスペクターを宙吊りにして、音を拾ってパソコンで集計したもの。
だから、変な内容が所々にあります。猫による騒音と思われる 120, 156, 233 の3点は棄却しています。

ライブラリ QCCの使い方については、下記を参照。
URLリンク(www.ec.kansai-u.ac.jp)
URLリンク(www.e.okayama-u.ac.jp)
URLリンク(www.biwako.shiga-u.ac.jp)

管理図の見方については、下記を参照。
URLリンク(www.e.okayama-u.ac.jp)

結果はこんなところです。
問題なのが、5箇所ぐらい、1σ内に5点ぐらい連続して集まっている場所があります。
これは、おそらく、何かしらかの原因で外気が室内に入って、線量が下がったものと思われます。
何点が上側管理限界を超えている点がありますが、これは猫の騒音でしょう。
一般に、上下3σ内から外れる確率は 約2/1000で、管理限界を超えた時点で即異常値と判断できます。
しかし、そのようなわかりきった内容で管理図を眺めると肝心な内容を見落としてしまう。
2σ線(X管理図の場合にはUCLとLCLの間を6分割して、下から 3σ, 2σ, 1σ, CL, 1σ, 2σ, 3σ線)内(上下2σ線の間)に全データ数の95%が入っているか、1σ線内に66%が入っているか、上下が対象か、に注意してください。
2σ線と3σ線の間に集まっていて、1σ線内の数が少ない場合には、2つの群に分けなければならない測定値をひとまとめにして測定していることがわかります。上下が対照でなく特定の範囲に固まって存在する場合にも同様なことがいえます。

高濃度な空気と低濃度な空気が混在していて、変な偏りがあり、微量な分析には適さないのです。

14:名無しに影響はない(栃木県)
12/04/08 15:12:11.67 UM3uS8YD
> library(qcc)
x <- c(33, 29, 36, 53, 39, 39, 37, 37, 34, 40, 42, 34, 24, 41, 44, 30, 44, 41, 28, 29, 32, 33, 31, 33, 42, 45,
40, 38, 36, 37, 53, 96, 37, 34, 39, 40, 41, 48, 33, 37, 34, 38, 32, 39, 36, 32, 22, 41, 54, 35, 39, 35, 35, 38,
49, 37, 31, 28, 25, 33, 41, 32, 47, 33, 35, 34, 23, 27, 38, 41, 36, 33, 29, 32, 21, 28, 38, 30, 37, 28, 36, 32,
35, 29, 32, 44, 33, 37, 34, 31, 39, 31, 50, 37, 30, 39, 43, 30, 40, 30, 36, 37, 32, 38, 31, 37, 38, 39, 37, 33,
39, 39, 40, 31, 31, 37, 37, 26, 34, 36, 36, 34, 40, 31, 38, 33, 44, 41, 37, 26, 36, 41, 32, 33, 27, 34, 39, 41,
36, 28, 18, 35, 35, 40, 33, 32, 23, 28, 40, 30, 34, 45, 43, 31, 41, 53, 26, 34, 35, 39, 32, 33, 33, 36, 44, 28,
48, 40, 29, 34, 41, 35, 23, 40, 33, 32, 36, 31, 35, 29, 40, 36, 38, 44, 36, 24, 36, 33, 35, 32, 38, 43, 28, 24,
31, 27, 24, 41, 24, 35, 43, 47, 41, 41, 28, 28, 37, 50, 38, 35, 26, 32, 30, 35, 35, 35, 32, 24, 37, 32, 37, 41,
41, 37, 33, 35, 36, 41, 34, 29, 35, 29, 37, 42, 29, 33, 17, 31, 28, 32, 32, 28, 49, 34, 30, 37, 40, 47, 37, 28,
38, 23, 43, 38, 26, 29, 33, 36, 25, 36, 33, 39, 31, 37, 36, 30, 31, 27, 31, 30, 43, 40, 28, 34, 35, 39, 42, 39,
36, 42, 43, 31, 28, 38, 37, 35, 33, 39, 34, 40, 34, 38, 30, 30, 36, 38, 43, 36, 38, 37, 26, 34, 31, 34, 36, 43,
40, 40, 38, 26, 27, 26, 39, 30, 26, 32, 30, 36, 36, 45, 39, 41, 44, 33, 42, 47, 37, 49, 38, 37, 39, 31, 27, 36,
40, 25, 34, 31, 28, 36, 38, 39, 51, 34, 23, 44, 39, 39, 41, 44, 32, 42, 36, 31, 37, 37, 26, 35, 47, 33, 31, 32,
37, 42, 43, 65, 45, 35, 44, 32, 35, 50, 39, 22, 28, 42, 31, 27, 27, 37, 29, 33, 37, 27, 36, 39, 30, 30, 30, 36,
42, 17, 35, 40, 53, 30, 44, 47, 37, 52, 38, 32, 42, 25, 41, 41, 30, 38, 34, 41, 34, 38, 31, 29, 38, 28, 22, 34,
26, 26, 39, 33, 28, 38, 23, 39, 40, 40, 28, 41, 43, 35, 32, 29, 29, 32, 28, 43, 37, 24, 30, 53, 24, 33, 42, 32,
29, 40, 31, 36, 36, 36, 39, 43, 34, 41, 40, 40, 25, 48, 36, 38, 33, 49, 39, 44, 30, 41, 33, 24, 32, 37, 38, 36,
29, 35, 41, 26, 42, 33, 47, 40, 42, 31, 30, 25, 36, 32, 32, 42, 43, 41, 41, 40, 28, 37, 46, 32, 38, 38, 44, 32,
33, 37, 37, 36, 26, 39, 29, 45, 28, 19, 35, 34, 34, 36, 29, 37, 32, 45, 36, 31, 25, 27, 34, 29, 33, 28, 33, 30,
34, 40, 29, 34, 28, 38, 37, 33, 42, 36, 38, 34, 31, 29, 45, 54, 33, 33, 42, 38, 26, 36, 24, 22, 30, 56, 31, 30,
29, 24, 35, 37, 33, 24, 37, 26, 25, 27, 43, 35, 46, 40, 33, 31, 41, 32, 44, 28, 40, 33, 35, 38, 33, 36, 38, 40,
40, 42, 32, 31, 47, 37, 36, 38, 37, 37, 31, 28, 37, 31, 40, 30, 36, 34, 36, 32, 39, 35, 20, 32, 38, 38, 28, 40,
29, 31, 41, 37, 41, 39, 29, 32, 38, 35, 33, 39, 26, 37, 27, 26, 31, 31, 46, 36, 39, 32, 25, 28, 38, 30, 32, 44,
32, 36, 39, 33, 49, 43, 38, 41, 30, 42, 41, 39, 35, 39, 33, 36, 36, 42, 32, 25, 33, 35, 34, 44, 41, 37, 39, 36,
30, 38, 34, 33, 34, 40, 28, 34, 48, 30, 40, 40, 27, 37, 33, 42, 40, 35, 37, 28, 26, 27, 35, 27, 44, 37, 34, 37,
41, 37, 33, 33, 36, 34, 41, 37, 37, 52, 31, 39, 46, 40, 27, 24, 33, 37, 29, 40, 46, 40, 19, 37, 21, 27, 28, 28,
34, 35, 41, 38, 30, 32, 36, 42, 56, 30, 24, 42, 36, 37, 46, 36, 41, 35, 48, 33, 45, 34, 37, 25, 29, 43, 34, 34,
29, 28, 26, 31, 37, 38, 40, 38, 40, 45, 34, 41, 24, 37, 29, 42, 23, 30, 43, 34, 38, 32, 36, 28, 32, 37, 37, 37,
29, 34, 38, 33, 39, 35, 31, 52, 48, 34, 43, 43, 39, 32, 40, 30, 56, 87)

15:名無しに影響はない(栃木県)
12/04/08 15:16:23.53 UM3uS8YD
weight <- matrix(x,nrow=160)
sample <- rep(1:160, each=5)
d <- qcc.groups(weight, sample)
colnames(d) <- c("1st","2nd", "3th", "4th", "5th")

> qcc(data=d, type="xbar.one")

Call:
qcc(data = d, type = "xbar.one")

xbar.one chart for d

Summary of group statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 31.00 36.00 35.47 39.00 96.00

Group sample size: 5
Number of groups: 800
Center of group statistics: 35.47125
Standard deviation: 6.584028

Control limits:
LCL UCL
15.71917 55.22333
>
334 CPM が 1 uSv/hですので、測定値(単位CPM)からuSV/hへの換算はできるでしょう。


16:名無しに影響はない(やわらか銀行)
12/04/08 22:08:53.34 39gPaL8L
>>15
たぶんほとんどの人が意味がわからないと思います。
1.測定対象
2.測定結果
3.補足コメント
4. データ貼り付け
のようにしたほうがわかりやすいと思います。


17:名無しに影響はない(栃木県)
12/04/09 20:07:17.87 WOmGBIk+
>>16
1.測定対象
バソコンを置いてある部屋の大気(2012.03.26日夕方から翌日にかけて)を測定したもの。単位CPM。インスペクターは 334 CPM が 1 uSv/h なので、シーベルト単位の値が必要な方は換算してください。
測定場所は栃木県内のどこか。官公庁の発表は 0.05-0.12 uSV/h 程度、インスペクターのユーザーが極端に少ないのでこれ以上の情報はご勘弁ください。
2.測定結果
>>14
3.補足コメント
問題なのが、5箇所ぐらい、1σ内に5点ぐらい連続して集まっている場所があります。
これは、おそらく、何かしらかの原因で外気が室内に入って、線量が下がったものと思われます。
何点が上側管理限界を超えている点がありますが、これは猫の騒音でしょう。
一般に、上下3σ内から外れる確率は 約2/1000で、管理限界を超えた時点で即異常値と判断できます。
しかし、そのようなわかりきった内容で管理図を眺めると肝心な内容を見落としてしまう。
2σ線(X管理図の場合にはUCLとLCLの間を6分割して、下から 3σ, 2σ, 1σ, CL, 1σ, 2σ, 3σ線)内(上下2σ線の間)に全データ数の95%が入っているか、
1σ線内に66%が入っているか、上下が対象か、に注意してください。
2σ線と3σ線の間に集まっていて、1σ線内の数が少ない場合には、2つの群に分けなければならない測定値をひとまとめにして測定していることがわかります。
上下が対照でなく特定の範囲に固まって存在する場合にも同様なことがいえます。
高濃度な空気と低濃度な空気が混在していて、変な偏りがあり、微量な分析には適さないのです。

 日本国内で使われている「X管理図」と呼ばれている物は3種類あります。そのうちのひとつが qcc で描かれる管理図で、連続する何個か(ここでは5個を使用)をひとつの群(group)として取り扱い、
合計800個のデータを、160群に分けて使用し、中心線(CL)・管理限界(UCL, LCL)を計算する方法のようです。
計算結果を見ると、CL=35.47125, UCL=55.22933, LCL=15.71917 です。σ=6.584028 という計算結果がありますので、これを使うと、
1σ線が 35.47125+6.584028 = 42.055278 と 35.47125-6.584028 = 28.887222 の2本になります。同様に2σ線が 35.47125+6.584028*2 = 48.639306 と 35.47125-6.584028*2 = 22.303194 に、
3σ線は既にある UCL, LCLと同じ 55.22933 と 15.71917 になります。
4. データ貼り付け
> library(qcc)
>x <- c(33, (中略) , 56, 87) # >>14 生データ。
>weight <- matrix(x,nrow=160)
>sample <- rep(1:160, each=5)
>d <- qcc.groups(weight, sample)
>colnames(d) <- c("1st","2nd", "3th", "4th", "5th")

> qcc(data=d, type="xbar.one")
Call:
qcc(data = d, type = "xbar.one")

xbar.one chart for d

Summary of group statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 31.00 36.00 35.47 39.00 96.00

Group sample size: 5
Number of groups: 800
Center of group statistics: 35.47125
Standard deviation: 6.584028

Control limits:
LCL UCL
15.71917 55.22333
>

18:名無しに影響はない(栃木県)
12/04/10 19:19:15.20 rYU0Fh//
1.測定対象
2012.04.08 採取, 裏の畑ふきのとう, 40度1日乾燥 (11*9*2cm) 19g の測定値。
2.測定結果
まずは生データ。

1. n=31 BG
x <- c(42, 42, 26, 41, 36, 28, 51, 45, 42, 46, 42, 41, 40, 44, 30, 29, 41, 38, 39, 44, 34, 38, 35, 40, 52, 35, 43, 26, 34, 45, 47)
> mean(x) [1] 39.22581
> var(x) [1] 44.84731

2. n=32 試料
x <- c(65, 65, 70, 77, 67, 51, 68, 62, 72, 57, 58, 74, 76, 71, 71, 67, 70, 85, 50, 64, 89, 56, 57, 84, 68, 64, 55, 61, 69, 66, 63, 62)
> mean(x) [1] 66.6875
> var(x) [1] 84.67339

3. n=34 BG
x <- c(39, 49, 45, 32, 35, 39, 35, 33, 37, 40, 45, 35, 42, 33, 38, 32, 36, 35, 38, 34, 36, 30, 47, 35, 33, 34, 33, 39, 42, 25, 41, 31, 38, 31)
> mean(x) [1] 36.67647
> var(x) [1] 26.58913

4. n=33 試料
x <- c(63, 61, 70, 68, 76, 86, 66, 67, 66, 59, 86, 80, 61, 68, 65, 55, 84, 64, 65, 64, 62, 75, 62, 63, 66, 65, 79, 55, 66, 63, 61, 59, 63)
> mean(x) [1] 67.0606
> var(x) [1] 67.24621

5. n=33 BG
x <- c(40, 37, 37, 48, 42, 48, 39, 44, 37, 33, 45, 46, 31, 30, 25, 31, 36, 33, 39, 36, 45, 39, 40, 40, 40, 47, 42, 31, 48, 46, 55, 35, 42)
> mean(x) [1] 39.60606
> var(x) [1] 42.62121

19:名無しに影響はない(栃木県)
12/04/10 19:19:51.52 rYU0Fh//
4. データ貼り付け
全体の分析

x <- c(42, 42, 26, 41, 36, 28, 51, 45, 42, 46, 42, 41, 40, 44, 30, 29, 41, 38, 39, 44, 34, 38, 35, 40, 52, 35, 43, 26, 34, 45, 47 ,
65, 65, 70, 77, 67, 51, 68, 62, 72, 57, 58, 74, 76, 71, 71, 67, 70, 85, 50, 64, 89, 56, 57, 84, 68, 64, 55, 61, 69, 66, 63, 62 ,
39, 49, 45, 32, 35, 39, 35, 33, 37, 40, 45, 35, 42, 33, 38, 32, 36, 35, 38, 34, 36, 30, 47, 35, 33, 34, 33, 39, 42, 25, 41, 31, 38, 31 ,
63, 61, 70, 68, 76, 86, 66, 67, 66, 59, 86, 80, 61, 68, 65, 55, 84, 64, 65, 64, 62, 75, 62, 63, 66, 65, 79, 55, 66, 63, 61, 59, 63 ,
40, 37, 37, 48, 42, 48, 39, 44, 37, 33, 45, 46, 31, 30, 25, 31, 36, 33, 39, 36, 45, 39, 40, 40, 40, 47, 42, 31, 48, 46, 55, 35, 42)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 , 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 49.79755
> var(x)
[1] 247.36
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 149.7578, 第1自由度 = 4, 第2自由度 = 158, P値 < 2.2e-16
有意差あり、群による差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 12.2524, 自由度 = 4, P値 = 0.01557
有意差あり。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 134.2289, 第1自由度 = 4.000, 第2自由度 = 77.717, P値 < 2.2e-16
有意差あり、群による差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 6 3.680982 3.680982
30 20 12.269939 15.950920
35 29 17.791411 33.742331
40 24 14.723926 48.466258
45 16 9.815951 58.282209
50 4 2.453988 60.736196
55 10 6.134969 66.871166
60 17 10.429448 77.300613
65 18 11.042945 88.343558
70 7 4.294479 92.638037
75 5 3.067485 95.705521
80 3 1.840491 97.546012
85 4 2.453988 100.000000
>

20:名無しに影響はない(栃木県)
12/04/10 19:20:19.75 rYU0Fh//
試料とバックグラウンドの比較。
x <- c(42, 42, 26, 41, 36, 28, 51, 45, 42, 46, 42, 41, 40, 44, 30, 29, 41, 38, 39, 44, 34, 38, 35, 40, 52, 35, 43, 26, 34, 45, 47 ,
65, 65, 70, 77, 67, 51, 68, 62, 72, 57, 58, 74, 76, 71, 71, 67, 70, 85, 50, 64, 89, 56, 57, 84, 68, 64, 55, 61, 69, 66, 63, 62 ,
39, 49, 45, 32, 35, 39, 35, 33, 37, 40, 45, 35, 42, 33, 38, 32, 36, 35, 38, 34, 36, 30, 47, 35, 33, 34, 33, 39, 42, 25, 41, 31, 38, 31 ,
63, 61, 70, 68, 76, 86, 66, 67, 66, 59, 86, 80, 61, 68, 65, 55, 84, 64, 65, 64, 62, 75, 62, 63, 66, 65, 79, 55, 66, 63, 61, 59, 63 ,
40, 37, 37, 48, 42, 48, 39, 44, 37, 33, 45, 46, 31, 30, 25, 31, 36, 33, 39, 36, 45, 39, 40, 40, 40, 47, 42, 31, 48, 46, 55, 35, 42)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 594.8668, 第1自由度 = 1, 第2自由度 = 161, P値 < 2.2e-16
有意差あり、試料とバックグラウンドによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.4869, 自由度 = 1, P値 = 0.003577
有意差あり。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 522.673, 第1自由度 = 1.00, 第2自由度 = 107.23, P値 < 2.2e-16
有意差あり、試料とバックグラウンドによる差異がある。

>

21:名無しに影響はない(栃木県)
12/04/10 19:21:41.71 rYU0Fh//
繰り返しによる差異

1. BG
x <- c(42, 42, 26, 41, 36, 28, 51, 45, 42, 46, 42, 41, 40, 44, 30, 29, 41, 38, 39, 44, 34, 38, 35, 40, 52, 35, 43, 26, 34, 45, 47 ,
39, 49, 45, 32, 35, 39, 35, 33, 37, 40, 45, 35, 42, 33, 38, 32, 36, 35, 38, 34, 36, 30, 47, 35, 33, 34, 33, 39, 42, 25, 41, 31, 38, 31 ,
40, 37, 37, 48, 42, 48, 39, 44, 37, 33, 45, 46, 31, 30, 25, 31, 36, 33, 39, 36, 45, 39, 40, 40, 40, 47, 42, 31, 48, 46, 55, 35, 42)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.46939
> var(x)
[1] 38.72586
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.247, 第1自由度 = 2, 第2自由度 = 95, P値 = 0.1113
有意差あり、繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.4918, 自由度 = 2, P値 = 0.2877
有意差あり。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.581, 第1自由度 = 2.000, 第2自由度 = 61.442, P値 = 0.08389
有意差あり、繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 6 6.122449 6.122449
30 20 20.408163 26.530612
35 29 29.591837 56.122449
40 24 24.489796 80.612245
45 16 16.326531 96.938776
50 2 2.040816 98.979592
55 1 1.020408 100.000000
>


22:名無しに影響はない(栃木県)
12/04/10 19:22:25.06 rYU0Fh//
2. 試料
x <- c(65, 65, 70, 77, 67, 51, 68, 62, 72, 57, 58, 74, 76, 71, 71, 67, 70, 85, 50, 64, 89, 56, 57, 84, 68, 64, 55, 61, 69, 66, 63, 62 ,
63, 61, 70, 68, 76, 86, 66, 67, 66, 59, 86, 80, 61, 68, 65, 55, 84, 64, 65, 64, 62, 75, 62, 63, 66, 65, 79, 55, 66, 63, 61, 59, 63)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 66.87692
> var(x)
[1] 74.67212
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0298, 第1自由度 = 1, 第2自由度 = 63, P値 = 0.8634
有意差無し。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.4111, 自由度 = 1, P値 = 0.5214
有意差無し。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0297, 第1自由度 = 1.000, 第2自由度 = 61.689, P値 = 0.8637
有意差無し。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
50 2 3.076923 3.076923
55 9 13.846154 16.923077
60 17 26.153846 43.076923
65 18 27.692308 70.769231
70 7 10.769231 81.538462
75 5 7.692308 89.230769
80 3 4.615385 93.846154
85 4 6.153846 100.000000
>

23:名無しに影響はない(栃木県)
12/04/10 19:22:48.67 rYU0Fh//
バックグラウンドと試料の比較

1. BG
gr1 <- c(42, 42, 26, 41, 36, 28, 51, 45, 42, 46, 42, 41, 40, 44, 30, 29, 41, 38, 39, 44, 34, 38, 35, 40, 52, 35, 43, 26, 34, 45, 47 ,
39, 49, 45, 32, 35, 39, 35, 33, 37, 40, 45, 35, 42, 33, 38, 32, 36, 35, 38, 34, 36, 30, 47, 35, 33, 34, 33, 39, 42, 25, 41, 31, 38, 31 ,
40, 37, 37, 48, 42, 48, 39, 44, 37, 33, 45, 46, 31, 30, 25, 31, 36, 33, 39, 36, 45, 39, 40, 40, 40, 47, 42, 31, 48, 46, 55, 35, 42)
> mean(x)
[1] 38.46939
> var(x)
[1] 38.72586
gr2 <- c(65, 65, 70, 77, 67, 51, 68, 62, 72, 57, 58, 74, 76, 71, 71, 67, 70, 85, 50, 64, 89, 56, 57, 84, 68, 64, 55, 61, 69, 66, 63, 62 ,
63, 61, 70, 68, 76, 86, 66, 67, 66, 59, 86, 80, 61, 68, 65, 55, 84, 64, 65, 64, 62, 75, 62, 63, 66, 65, 79, 55, 66, 63, 61, 59, 63)
> mean(x)
[1] 66.87692
> var(x)
[1] 74.67212

t.test(gr1, gr2, v=T)
t.test(gr1, gr2)
var.test(gr1, gr2)

> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -24.3899, 自由度 = 161, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -30.70765 -26.10743
標本推定値:
平均値x 平均値y
38.46939 66.87692
有意。平均値に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -22.862, 自由度 = 107.23, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -30.87071 -25.94436
標本推定値:
平均値x 平均値y
38.46939 66.87692
有意。平均値に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5186, 第1自由度 = 97, 第2自由度 = 64, P値 = 0.003399
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3273010 0.8046984
標本推定値:
分散比
0.518612
有意差あり。分散は等しくない。平均値の差の検定は(Welchの方法)を使用する。

>

24:名無しに影響はない(栃木県)
12/04/10 19:24:10.18 rYU0Fh//
3.補足コメント
本来は、重み付演算を使うのですが、面倒なので普通の算術演算で
BG: 38.46939, 試料: 66.87692 CPM
よって、66.87692 - 38.46939 = 28.40753
本来の統計処理だと、試料のデータ数が100個以下の65個だから有効桁が1つ増えて、小数点以下第一位まで求める。
BGも100個以下の98だから有効桁が1つ増えて、小数点以下第1位まで求めて丸める。
BG: 38.5, 試料: 66.9 CPM
66.9-38.5=28.4
インスペクターによるやさしおの測定では、1.819個 / (分・100mg)なので、インスペクターの計数値からの換算計数は 0.47 Bq/CPM となる。
よって、測定した試料の線量は
28.4 * 0.47 = 13.3 Bq
となる。
試料の寸法は、 縦: 11cm, 横: 9cm, 高さ: 2cm で、風袋を温めた重さが 19g (ここではポリ袋の重さを0とする)より、比重は約 0.096 g/cm3 である。
単位面積あたりの試料の重さが 1g以下なので、試料によるβ線の吸収を0とする。
測定範囲が底面の半径 7.4cm、高さ2cm、上面の半径を4.1cm とする円錐台と考えれば、試料全体がほぼ測定可能範囲内にはいるので、19g全量を計ったとする。
よって、
13.3 * 1000 / 19 = 700
より、700Bq/kgとなる。
ふきの水分量が 96%(URLリンク(food.longseller.org))なので、ふきのとうの水分量を同量とすると、700 * (100-96.1) / 96.1 = 28.4 より
栃木産ふきのとう(自家栽培)の線量は 28 Bq/kg となる。
インスペクターはβ線測定を特長とする測定器ですから、γ線を測定を基準としている正確な測定とは異なります。


25:名無しに影響はない(栃木県)
12/04/10 19:39:24.31 rYU0Fh//
2022.13.25 マイクの集音能力の測定。
2-3分に1回の3連音を受信できず
猫等の生活音を受信する

パソコン値, インスペクター値, 差,備考
08:10 317, 276, 41
08:20 620, 584, 36
08:31 1044, 1010, 34
08:40 1289, 1260, 29
08:50 1644, 1613, 31, 猫音
09:00 2037, 2006, 31

これは、マイクロホンで音を拾って計数するというソフトの性能試験結果です。

26:名無しに影響はない(やわらか銀行)
12/04/11 02:20:45.27 8YEj24yd
1.測定対象
乾燥わかめ 150g 中国産 直付け ビニル袋で保護

2.測定結果
5分間バックグラウンド 198
5分間乾燥わかめ 251

3.補足コメント
バックグラウンドとの差があった。
カリウムを検出したと思う。三陸産わかめがあれば測ってみて比較したい。


27:名無しに影響はない(やわらか銀行)
12/04/11 02:30:14.57 8YEj24yd
>>24
ベクレルまでわかるんですか。
カルシウムの多い東日本の食品にはストロンチウムが入っているように思います。
干しえびや魚肉ソーセージや煮干しなど。
海に流出した原発の汚染水に含まれている放射性物質がわかればいいですが。
プルトニウムは豆類に蓄積するようです。

28:名無しに影響はない(やわらか銀行)
12/04/11 02:38:08.57 8YEj24yd
>>26はインスペクター+のトータルタイマーでの5分間のカウント数です。

29:名無しに影響はない(やわらか銀行)
12/04/11 03:16:37.49 8YEj24yd
インスペクター+ トータルタイマーモード 5分間カウント数
1.測定対象
丸大食品(大阪) フィッシュソーセージ70g 購入時の袋のまま直付け ビニル袋で保護

2.測定結果 5分間を2回測定
バックグラウンド 195、198
フィッシュソーセージ 201、198

3.補足コメント
数値に差がないようだ。次回はフィッシュソーセージを袋から出して測りたい。

30:名無しに影響はない(やわらか銀行)
12/04/11 03:22:10.59 8YEj24yd
インスペクター+ トータルタイマーモード 5分間カウント数
1.測定対象
(株)ヒガシマル(鹿児島) そうめん700g 袋のまま直付け ビニル袋で保護

2.測定結果 5分間を2回測定
バックグラウンド 195、198
そうめん 219、208

3.補足コメント
数値に差があるが誤差の範囲か。 原材料は小麦粉と食塩のみ

31:名無しに影響はない(やわらか銀行)
12/04/11 03:36:54.96 8YEj24yd
インスペクター+ トータルタイマーモード 5分間カウント数
1.測定対象
(株)ミタカ(熊本) 佐賀県産大麦 麦茶ティーバッグ400g 袋のまま直付け ビニル袋で保護

2.測定結果 5分間
バックグラウンド 195、198
麦茶   230


32:名無しに影響はない(やわらか銀行)
12/04/11 03:41:44.72 8YEj24yd
インスペクター+ トータルタイマーモード 5分間カウント数
1.測定対象
二豊フーズ(株)(大分県)納豆40g 直付け ビニル袋で保護

2.測定結果 5分間
バックグラウンド 195、198
納豆   229

33:名無しに影響はない(栃木県)
12/04/11 14:51:46.67 3KPqPkME
>>12
スレリンク(radiation板:357-359番)
>GJ!
>やっとこのスレもスッキリしたね!
ってあるから、エーヨッ(共通語訳 いいとも)。

>>27
まず、単位の定義を読んでくれ。
URLリンク(ja.wikipedia.org)
URLリンク(ja.wikipedia.org)
URLリンク(ja.wikipedia.org)
ンデ、測定器のほうで何をやっているのかッテート、
何分間又は何秒間又は何時間か、放射線の数(ガイガーのカリカリ音)を数えて
適切な演算をして、表示しているだけ。
つまり、検出器とカリカリ音を数えることができれば、
空中線量も、表面線量も、物質中の放射線量も数えられるわけ。

だから(精度は別にして)カウンターがついている放射線量計ならば測れることになります。
実際にどういう値になるかは、測定者の力量次第。

ここはにちゃんねるだから、嘘を嘘だとわかる人が利用しているわけで、嘘を見抜けないならば利用するな。

>プルトニウムは豆類に蓄積するようです。
そうなんだよな。
除去方法がわかれば、大豆でもインゲンでも小豆でもをいくらでも作付けするんだが
わかんないんで、作付けできないでいる。

34:名無しに影響はない(やわらか銀行)
12/04/11 15:32:28.04 8YEj24yd
福島、宮城、茨城が3大汚染地域です。
この地域の大豆や小豆などの豆類からプルトニウムが検出できるかもしれません。
汚染水にも含まれているので海藻や海底魚からも検出されそうです。
プルトニウムを検出する場合は、マイカ窓と対象物の間にビニルなど何もあってはいけません。
マイカ窓を3センチ程度まで近づけた数値と、間に紙一枚挟んだ数値に差があればプルトニウムです。
福島の自動車フィルターからはすでにプルトニウムが検出されています。
URLリンク(www.youtube.com)

35:名無しに影響はない(やわらか銀行)
12/04/11 15:42:00.47 8YEj24yd
納豆菌はほとんどが東日本産。
納豆菌は放射性物質で汚染するのであろうか?
九州で作った外国産大豆納豆はどこの納豆菌を使用しているか不明。
東京都、山形県、宮城県のメーカーが国内3大メーカー。
URLリンク(www.nattou.com)

36:名無しに影響はない(栃木県)
12/04/11 19:26:06.13 3KPqPkME
>>35
たしか、1gで100kgだったかな、使用量が。
だから、菌体が汚染されていたとしても薄まってしまうので、気にする必要なし。

>>34
α線放出核種は、重大な吸入障害を起こすので、呼吸器の防護を必要とする

放射線緊急事態時の評価および対応のための一般的手順
現場監督者の対応 手順書 Ci 2/4ページ内コラム(アクロバットではp40)より。
URLリンク(www.nirs.go.jp)
より。

口をあけて寝ていると、口内から出血をしたりしていますから、ある程度のα線核種が存在します。
また、集落内在住老人が「こんな刺すような鋭い痛みは経験していない」ということから、
2011年6月頃にストロンチウムよりも強いβ線を出す核種、おそらく、ネプツニウムが存在していたと思われます。
つまり、プルトニウムがそれなりの分量で家屋内に存在することが予想されます。

α線核種の場合には、ちょっとした薄膜程度で遮蔽されますので、どうしても、灰化しないと測定できません。
現時点では、ドラフトの入手ができず灰化はできません。
URLリンク(www.n-hakko.com) 灰化
URLリンク(ci.nii.ac.jp) 高温灰化による消失
URLリンク(www.jrias.or.jp) 低温灰化による消失
乾燥の場合にも、核種の希散と思われる現象が観察されています。机を改造した乾燥機を使用していますが
しいたけの乾燥中に、室内の線量が 0.05-0.12(最頻値 0.08) → 0.05-0.15(最頻値 0.12)と上昇しました。

37:名無しに影響はない(栃木県)
12/04/11 19:34:07.62 3KPqPkME
家庭内騒音による誤差。
測定値は以下のとおり。
x <- c( 0, 0, 2, 3, 2, 7, 3, 6, 7, 9, 7, 11, 7, 10, 15, 7, 9, 6, 9, 11, 12, 7, 8, 8, 13, 7, 9, 9, 15, 12, 20, 16, 17, 19, 14, 9, 12, 17, 26, 13, 16, 17, 11, 16, 19)
戸の開け閉め(2-9と10-15)、咳(26)、その他、思いつく限りの音を出しています。
1分間に1回、で画面を見ながら繰り返しを取っています。

38:名無しに影響はない(やわらか銀行)
12/04/11 22:44:22.19 8YEj24yd
インスペクター+ トータルタイマーモード 5分間カウント数
1.測定対象
長崎県産 小魚(きびなご)100g 直付け ビニル袋で保護

2.測定結果 5分間
バックグラウンド 195、198
きびなご   210

39:名無しに影響はない(栃木県)
12/04/14 07:52:56.32 PzUMpoQ1
1.測定対象
「JヌードルコーポレーションBK こだわりの熟成 2014.01 B3941204」の測定。20g
1回目の「茹で」は、説明書どおり。水200ccに麺20gをいれて茹でたもの
2回目の「茹で」は、沸騰した200ccのお湯に、茹であがった麺をいれて放置。
15分後麺が透き通ってきたら加熱を止めて、「茹であがった」として説明書3の通りにした。
「茹であがった麺」は、合金標準バット6号( URLリンク(taniguchi-metal.com) )に標準バット用金網を入れて、
キッチンペーパー( URLリンク(item.rakuten.co.jp) )1組をすいた上に広げた。
キッチンペーパーを丸めて先端を金網とバットの隙間に押し込んで、机を改造した乾燥機(40度)に4日間放置した。
乾燥後、麺は外側のキッチンペーパーを捨て内側のキッチンペーパーごと、
ユニパック F-4( URLリンク(www.seinichi.co.jp) )に入れて測定試料とした。
「袋」はF-4にキッチンペーパー1枚を入れたもの。「未茹で」は、麺20gを6cm-10cm程度に折り、キッチンペーパー1枚で包んだもの。
いずれも、直径10cm以内に入る大きさに折りたたんで、机の上に置き、上空3cmにインスペクターを置いて、30分程度測定。音をパソコンで集計したもの。


40:名無しに影響はない(栃木県)
12/04/14 07:54:58.04 PzUMpoQ1
2.測定結果
まずは生データ。
1. n=30 BG
x <- c(26, 46, 30, 40, 47, 41, 32, 42, 30, 40, 44, 39, 42, 51, 44, 38, 38, 34, 48, 54, 44, 34, 31, 29, 45, 36, 53, 31, 41, 38)
> mean(x)
[1] 39.6
> var(x)
[1] 53.69655
>

2. n=31 袋
x <- c(34, 42, 40, 35, 38, 39, 29, 54, 39, 40, 35, 50, 35, 35, 40, 41, 33, 38, 33, 36, 47, 40, 33, 38, 48, 40, 42, 33, 25, 29, 39)
> mean(x)
[1] 38.06452
> var(x)
[1] 37.72903
>

3. n=35 未茹で
x <- c(43, 51, 38, 37, 45, 38, 41, 42, 35, 35, 37, 45, 39, 37, 41, 43, 46, 38, 49, 33, 35, 35, 43, 49, 50, 33, 43, 45, 48, 50, 39, 21, 41, 41, 46)
> mean(x)
[1] 40.91429
> var(x)
[1] 38.49244
>

4. n=30 茹で1回
x <- c(37, 38, 40, 51, 37, 38, 54, 36, 25, 36, 38, 45, 53, 32, 42, 50, 37, 36, 46, 60, 34, 50, 48, 34, 30, 37, 34, 31, 34, 39)
> mean(x)
[1] 40.06667
> var(x)
[1] 66.4092
>
5. n=32 茹で2回
x <- c(37, 31, 37, 47, 38, 39, 42, 38, 40, 33, 41, 42, 35, 36, 43, 33, 42, 49, 41, 38, 39, 36, 48, 39, 33, 35, 32, 25, 35, 38, 32, 45)
> mean(x)
[1] 38.09375
> var(x)
[1] 27.44254
>

6. n=31 BG
x <- c(37, 32, 46, 42, 33, 40, 38, 41, 35, 39, 34, 31, 43, 37, 43, 42, 48, 43, 26, 36, 29, 45, 32, 36, 43, 35, 50, 44, 44, 41, 47)
> mean(x)
[1] 39.09677
> var(x)
[1] 34.75699
>


41:名無しに影響はない(栃木県)
12/04/14 07:55:22.73 PzUMpoQ1
7. n=35 袋
x <- c(50, 27, 34, 42, 45, 38, 37, 39, 26, 51, 27, 37, 40, 40, 30, 43, 30, 47, 35, 34, 54, 38, 36, 41, 38, 26, 40, 32, 37, 32, 40, 40, 50, 37, 37)
> mean(x)
[1] 38
> var(x)
[1] 49.82353
>
8. n=31 茹で1回
x <- c(39, 27, 37, 44, 49, 49, 38, 48, 56, 35, 42, 41, 38, 34, 40, 27, 36, 40, 31, 38, 40, 29, 37, 37, 37, 43, 34, 39, 41, 41, 37)
> mean(x)
[1] 38.83871
> var(x)
[1] 39.47312
>
9. n=31 未茹で
x <- c(46, 40, 38, 33, 55, 44, 53, 39, 47, 41, 39, 31, 47, 44, 36, 38, 47, 33, 34, 36, 39, 44, 40, 55, 34, 36, 40, 31, 50, 53, 50)
> mean(x)
[1] 41.70968
> var(x)
[1] 50.67957
>
10. n=30 茹で2回
x <- c(37, 44, 49, 30, 37, 35, 41, 44, 32, 36, 29, 33, 45, 43, 33, 33, 46, 43, 48, 39, 31, 36, 41, 40, 32, 34, 43, 38, 39, 44)
> mean(x)
[1] 38.5
> var(x)
[1] 31.36207
>

11. n=30 BG
x <- c(38, 40, 40, 41, 37, 41, 47, 33, 33, 42, 37, 45, 32, 38, 35, 46, 36, 38, 36, 44, 26, 40, 42, 53, 41, 44, 37, 32, 40, 35)
> mean(x)
[1] 38.96667
> var(x)
[1] 28.72299
>

12. n=31 袋
x <- c(39, 32, 42, 41, 38, 46, 28, 37, 46, 35, 34, 40, 35, 41, 42, 43, 41, 31, 47, 46, 31, 42, 27, 51, 37, 41, 41, 34, 29, 37, 45)
> mean(x)
[1] 38.67742
> var(x)
[1] 36.29247
>


42:名無しに影響はない(栃木県)
12/04/14 07:56:14.68 PzUMpoQ1
4. データ貼り付け

全体の分析

x <- c(26, 46, 30, 40, 47, 41, 32, 42, 30, 40, 44, 39, 42, 51, 44, 38, 38, 34, 48, 54, 44, 34, 31, 29, 45, 36, 53, 31, 41, 38 ,
34, 42, 40, 35, 38, 39, 29, 54, 39, 40, 35, 50, 35, 35, 40, 41, 33, 38, 33, 36, 47, 40, 33, 38, 48, 40, 42, 33, 25, 29, 39 ,
43, 51, 38, 37, 45, 38, 41, 42, 35, 35, 37, 45, 39, 37, 41, 43, 46, 38, 49, 33, 35, 35, 43, 49, 50, 33, 43, 45, 48, 50, 39, 21, 41, 41, 46 ,
37, 38, 40, 51, 37, 38, 54, 36, 25, 36, 38, 45, 53, 32, 42, 50, 37, 36, 46, 60, 34, 50, 48, 34, 30, 37, 34, 31, 34, 39 ,
37, 31, 37, 47, 38, 39, 42, 38, 40, 33, 41, 42, 35, 36, 43, 33, 42, 49, 41, 38, 39, 36, 48, 39, 33, 35, 32, 25, 35, 38, 32, 45 ,
37, 32, 46, 42, 33, 40, 38, 41, 35, 39, 34, 31, 43, 37, 43, 42, 48, 43, 26, 36, 29, 45, 32, 36, 43, 35, 50, 44, 44, 41, 47 ,
50, 27, 34, 42, 45, 38, 37, 39, 26, 51, 27, 37, 40, 40, 30, 43, 30, 47, 35, 34, 54, 38, 36, 41, 38, 26, 40, 32, 37, 32, 40, 40, 50, 37, 37 ,
39, 27, 37, 44, 49, 49, 38, 48, 56, 35, 42, 41, 38, 34, 40, 27, 36, 40, 31, 38, 40, 29, 37, 37, 37, 43, 34, 39, 41, 41, 37 ,
46, 40, 38, 33, 55, 44, 53, 39, 47, 41, 39, 31, 47, 44, 36, 38, 47, 33, 34, 36, 39, 44, 40, 55, 34, 36, 40, 31, 50, 53, 50 ,
37, 44, 49, 30, 37, 35, 41, 44, 32, 36, 29, 33, 45, 43, 33, 33, 46, 43, 48, 39, 31, 36, 41, 40, 32, 34, 43, 38, 39, 44 ,
38, 40, 40, 41, 37, 41, 47, 33, 33, 42, 37, 45, 32, 38, 35, 46, 36, 38, 36, 44, 26, 40, 42, 53, 41, 44, 37, 32, 40, 35 ,
39, 32, 42, 41, 38, 46, 28, 37, 46, 35, 34, 40, 35, 41, 42, 43, 41, 31, 47, 46, 31, 42, 27, 51, 37, 41, 41, 34, 29, 37, 45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 , 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 , 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 ,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 , 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 ,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9 , 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10 ,
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11 ,
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12)
> mean(x)
[1] 39.2122
> var(x)
[1] 41.30591
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.0675, 第1自由度 = 11, 第2自由度 = 365, P値 = 0.3866
有意差あり。群による差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 11.9859, 自由度 = 11, P値 = 0.3647
有意。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.9729, 第1自由度 = 11.000, 第2自由度 = 143.248, P値 = 0.4738
有意差あり。群による差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.265252 0.265252
25 21 5.570292 5.835544
30 64 16.976127 22.811671
35 117 31.034483 53.846154
40 100 26.525199 80.371353
45 46 12.201592 92.572944
50 24 6.366048 98.938992
55 3 0.795756 99.734748
60 1 0.265252 100.000000
>

43:名無しに影響はない(栃木県)
12/04/14 07:56:50.56 PzUMpoQ1
x <- c(26, 46, 30, 40, 47, 41, 32, 42, 30, 40, 44, 39, 42, 51, 44, 38, 38, 34, 48, 54, 44, 34, 31, 29, 45, 36, 53, 31, 41, 38 ,
34, 42, 40, 35, 38, 39, 29, 54, 39, 40, 35, 50, 35, 35, 40, 41, 33, 38, 33, 36, 47, 40, 33, 38, 48, 40, 42, 33, 25, 29, 39 ,
43, 51, 38, 37, 45, 38, 41, 42, 35, 35, 37, 45, 39, 37, 41, 43, 46, 38, 49, 33, 35, 35, 43, 49, 50, 33, 43, 45, 48, 50, 39, 21, 41, 41, 46 ,
37, 38, 40, 51, 37, 38, 54, 36, 25, 36, 38, 45, 53, 32, 42, 50, 37, 36, 46, 60, 34, 50, 48, 34, 30, 37, 34, 31, 34, 39 ,
37, 31, 37, 47, 38, 39, 42, 38, 40, 33, 41, 42, 35, 36, 43, 33, 42, 49, 41, 38, 39, 36, 48, 39, 33, 35, 32, 25, 35, 38, 32, 45 ,
37, 32, 46, 42, 33, 40, 38, 41, 35, 39, 34, 31, 43, 37, 43, 42, 48, 43, 26, 36, 29, 45, 32, 36, 43, 35, 50, 44, 44, 41, 47 ,
50, 27, 34, 42, 45, 38, 37, 39, 26, 51, 27, 37, 40, 40, 30, 43, 30, 47, 35, 34, 54, 38, 36, 41, 38, 26, 40, 32, 37, 32, 40, 40, 50, 37, 37 ,
39, 27, 37, 44, 49, 49, 38, 48, 56, 35, 42, 41, 38, 34, 40, 27, 36, 40, 31, 38, 40, 29, 37, 37, 37, 43, 34, 39, 41, 41, 37 ,
46, 40, 38, 33, 55, 44, 53, 39, 47, 41, 39, 31, 47, 44, 36, 38, 47, 33, 34, 36, 39, 44, 40, 55, 34, 36, 40, 31, 50, 53, 50 ,
37, 44, 49, 30, 37, 35, 41, 44, 32, 36, 29, 33, 45, 43, 33, 33, 46, 43, 48, 39, 31, 36, 41, 40, 32, 34, 43, 38, 39, 44 ,
38, 40, 40, 41, 37, 41, 47, 33, 33, 42, 37, 45, 32, 38, 35, 46, 36, 38, 36, 44, 26, 40, 42, 53, 41, 44, 37, 32, 40, 35 ,
39, 32, 42, 41, 38, 46, 28, 37, 46, 35, 34, 40, 35, 41, 42, 43, 41, 31, 47, 46, 31, 42, 27, 51, 37, 41, 41, 34, 29, 37, 45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 , 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 , 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 , 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 , 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.6641, 第1自由度 = 4, 第2自由度 = 372, P値 = 0.03232
有意差あり。群による差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5.5387, 自由度 = 4, P値 = 0.2364
有意。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.6132, 第1自由度 = 4.000, 第2自由度 = 174.657, P値 = 0.03704
有意差あり。群による差異がある。


44:名無しに影響はない(栃木県)
12/04/14 07:57:54.42 PzUMpoQ1
繰り返しによる差異

1. n=91 BG
x <- c(26, 46, 30, 40, 47, 41, 32, 42, 30, 40, 44, 39, 42, 51, 44, 38, 38, 34, 48, 54, 44, 34, 31, 29, 45, 36, 53, 31, 41, 38 ,
37, 32, 46, 42, 33, 40, 38, 41, 35, 39, 34, 31, 43, 37, 43, 42, 48, 43, 26, 36, 29, 45, 32, 36, 43, 35, 50, 44, 44, 41, 47 ,
38, 40, 40, 41, 37, 41, 47, 33, 33, 42, 37, 45, 32, 38, 35, 46, 36, 38, 36, 44, 26, 40, 42, 53, 41, 44, 37, 32, 40, 35)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 39.21978
> var(x)
[1] 38.21783
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0862, 第1自由度 = 2, 第2自由度 = 88, P値 = 0.9175
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.0282, 自由度 = 2, P値 = 0.22
有意。先の分散分析は無効

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0745, 第1自由度 = 2.000, 第2自由度 = 57.737, P値 = 0.9283
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 5 5.494505 5.494505
30 16 17.582418 23.076923
35 23 25.274725 48.351648
40 31 34.065934 82.417582
45 11 12.087912 94.505495
50 5 5.494505 100.000000
>


45:名無しに影響はない(栃木県)
12/04/14 07:58:22.34 PzUMpoQ1
2. n=97 袋
x <- c(34, 42, 40, 35, 38, 39, 29, 54, 39, 40, 35, 50, 35, 35, 40, 41, 33, 38, 33, 36, 47, 40, 33, 38, 48, 40, 42, 33, 25, 29, 39 ,
50, 27, 34, 42, 45, 38, 37, 39, 26, 51, 27, 37, 40, 40, 30, 43, 30, 47, 35, 34, 54, 38, 36, 41, 38, 26, 40, 32, 37, 32, 40, 40, 50, 37, 37 ,
39, 32, 42, 41, 38, 46, 28, 37, 46, 35, 34, 40, 35, 41, 42, 43, 41, 31, 47, 46, 31, 42, 27, 51, 37, 41, 41, 34, 29, 37, 45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.23711
> var(x)
[1] 40.87027
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.1069, 第1自由度 = 2, 第2自由度 = 94, P値 = 0.8988
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.9797, 自由度 = 2, P値 = 0.6127
有意。先の分散分析は無効

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.1126, 第1自由度 = 2.000, 第2自由度 = 62.638, P値 = 0.8937
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 10 10.309278 10.30928
30 16 16.494845 26.80412
35 29 29.896907 56.70103
40 26 26.804124 83.50515
45 9 9.278351 92.78351
50 7 7.216495 100.00000
>


46:名無しに影響はない(栃木県)
12/04/14 07:58:51.52 PzUMpoQ1
3. n=66 未茹で
x <- c(43, 51, 38, 37, 45, 38, 41, 42, 35, 35, 37, 45, 39, 37, 41, 43, 46, 38, 49, 33, 35, 35, 43, 49, 50, 33, 43, 45, 48, 50, 39, 21, 41, 41, 46 ,
46, 40, 38, 33, 55, 44, 53, 39, 47, 41, 39, 31, 47, 44, 36, 38, 47, 33, 34, 36, 39, 44, 40, 55, 34, 36, 40, 31, 50, 53, 50)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 41.28788
> var(x)
[1] 43.68508
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2353, 第1自由度 = 1, 第2自由度 = 64, P値 = 0.6293
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.5951, 自由度 = 1, P値 = 0.4404
有意。先の分散分析は無効

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.2313, 第1自由度 = 1.000, 第2自由度 = 59.987, P値 = 0.6323
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.515152 1.515152
25 0 0.000000 1.515152
30 8 12.121212 13.636364
35 20 30.303030 43.939394
40 16 24.242424 68.181818
45 12 18.181818 86.363636
50 7 10.606061 96.969697
55 2 3.030303 100.000000
>

47:名無しに影響はない(栃木県)
12/04/14 07:59:20.24 PzUMpoQ1
4. n=61 茹で1回
x <- c(37, 38, 40, 51, 37, 38, 54, 36, 25, 36, 38, 45, 53, 32, 42, 50, 37, 36, 46, 60, 34, 50, 48, 34, 30, 37, 34, 31, 34, 39 ,
39, 27, 37, 44, 49, 49, 38, 48, 56, 35, 42, 41, 38, 34, 40, 27, 36, 40, 31, 38, 40, 29, 37, 37, 37, 43, 34, 39, 41, 41, 37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 39.44262
> var(x)
[1] 52.21749
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.4361, 第1自由度 = 1, 第2自由度 = 59, P値 = 0.5116
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.9459, 自由度 = 1, P値 = 0.1630
有意。先の分散分析は無効

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.4324, 第1自由度 = 1.00, 第2自由度 = 54.52, P値 = 0.5136
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 4 6.557377 6.557377
30 10 16.393443 22.950820
35 23 37.704918 60.655738
40 11 18.032787 78.688525
45 6 9.836066 88.524590
50 5 8.196721 96.721311
55 1 1.639344 98.360656
60 1 1.639344 100.000000
>

48:名無しに影響はない(栃木県)
12/04/14 07:59:44.72 PzUMpoQ1
5. n=62 茹で2回
x <- c(37, 31, 37, 47, 38, 39, 42, 38, 40, 33, 41, 42, 35, 36, 43, 33, 42, 49, 41, 38, 39, 36, 48, 39, 33, 35, 32, 25, 35, 38, 32, 45 ,
37, 44, 49, 30, 37, 35, 41, 44, 32, 36, 29, 33, 45, 43, 33, 33, 46, 43, 48, 39, 31, 36, 41, 40, 32, 34, 43, 38, 39, 44)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 38.29032
> var(x)
[1] 28.89794
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0871, 第1自由度 = 1, 第2自由度 = 60, P値 = 0.7689
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.1314, 自由度 = 1, P値 = 0.717
有意ではない。先の分散分析は有効

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0867, 第1自由度 = 1.000, 第2自由度 = 58.971, P値 = 0.7694
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 2 3.225806 3.225806
30 14 22.580645 25.806452
35 22 35.483871 61.290323
40 16 25.806452 87.096774
45 8 12.903226 100.000000
>

49:名無しに影響はない(栃木県)
12/04/14 08:00:46.27 PzUMpoQ1
バックグラウンドとの比較
1. n=91 BG
gr1 <- c(26, 46, 30, 40, 47, 41, 32, 42, 30, 40, 44, 39, 42, 51, 44, 38, 38, 34, 48, 54, 44, 34, 31, 29, 45, 36, 53, 31, 41, 38 ,
37, 32, 46, 42, 33, 40, 38, 41, 35, 39, 34, 31, 43, 37, 43, 42, 48, 43, 26, 36, 29, 45, 32, 36, 43, 35, 50, 44, 44, 41, 47 ,
38, 40, 40, 41, 37, 41, 47, 33, 33, 42, 37, 45, 32, 38, 35, 46, 36, 38, 36, 44, 26, 40, 42, 53, 41, 44, 37, 32, 40, 35)
> mean(x)
[1] 39.21978
> var(x)
[1] 38.21783

2. n=97 袋
gr2 <- c(34, 42, 40, 35, 38, 39, 29, 54, 39, 40, 35, 50, 35, 35, 40, 41, 33, 38, 33, 36, 47, 40, 33, 38, 48, 40, 42, 33, 25, 29, 39 ,
50, 27, 34, 42, 45, 38, 37, 39, 26, 51, 27, 37, 40, 40, 30, 43, 30, 47, 35, 34, 54, 38, 36, 41, 38, 26, 40, 32, 37, 32, 40, 40, 50, 37, 37 ,
39, 32, 42, 41, 38, 46, 28, 37, 46, 35, 34, 40, 35, 41, 42, 43, 41, 31, 47, 46, 31, 42, 27, 51, 37, 41, 41, 34, 29, 37, 45)
> mean(x)
[1] 38.23711
> var(x)
[1] 40.87027
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = 1.0702, 自由度 = 186, P値 = 0.2859
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -0.8288018 2.7941355
標本推定値:
平均値x 平均値y
39.21978 38.23711
有意。平均値に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = 1.0713, 自由度 = 185.825, P値 = 0.2854
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -0.8268647 2.7921983
標本推定値:
平均値x 平均値y
39.21978 38.23711
有意。平均値に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.9351, 第1自由度 = 90, 第2自由度 = 96, P値 = 0.7489
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.6219275 1.4098211
標本推定値:
分散比
0.9351008
有意。(Welchの方法)を使用する。
>

39.2-38.2 = 1
1 * 0.47 = 0.47 Bq/1袋(袋による遮蔽)


50:名無しに影響はない(栃木県)
12/04/14 08:01:16.53 PzUMpoQ1
3. n=66 未茹で
gr2 <- c(43, 51, 38, 37, 45, 38, 41, 42, 35, 35, 37, 45, 39, 37, 41, 43, 46, 38, 49, 33, 35, 35, 43, 49, 50, 33, 43, 45, 48, 50, 39, 21, 41, 41, 46 ,
46, 40, 38, 33, 55, 44, 53, 39, 47, 41, 39, 31, 47, 44, 36, 38, 47, 33, 34, 36, 39, 44, 40, 55, 34, 36, 40, 31, 50, 53, 50)
> mean(x)
[1] 41.28788
> var(x)
[1] 43.68508
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -2.0097, 自由度 = 155, P値 = 0.0462
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -4.10089286 -0.03530427
標本推定値:
平均値x 平均値y
39.21978 41.28788
有意。平均値に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -1.9883, 自由度 = 134.536, P値 = 0.04881
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -4.12522061 -0.01097653
標本推定値:
平均値x 平均値y
39.21978 41.28788
有意。平均値に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8748, 第1自由度 = 90, 第2自由度 = 65, P値 = 0.553
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5505676 1.3668892
標本推定値:
分散比
0.8748485
有意。(Welchの方法)を使用する。

>
41.3 - 39.2 = 2.1
2.1 * 0.47 = 0.99


51:名無しに影響はない(栃木県)
12/04/14 09:46:06.53 PzUMpoQ1
連続投稿規制に引っかかったので中断したものを再開。
4. n=61 茹で1回
gr2 <- c(37, 38, 40, 51, 37, 38, 54, 36, 25, 36, 38, 45, 53, 32, 42, 50, 37, 36, 46, 60, 34, 50, 48, 34, 30, 37, 34, 31, 34, 39 ,
39, 27, 37, 44, 49, 49, 38, 48, 56, 35, 42, 41, 38, 34, 40, 27, 36, 40, 31, 38, 40, 29, 37, 37, 37, 43, 34, 39, 41, 41, 37)
> mean(x)
[1] 39.44262
> var(x)
[1] 52.21749
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.2034, 自由度 = 150, P値 = 0.839
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.387191 1.941505
標本推定値:
平均値x 平均値y
39.21978 39.44262
有意ではない。平均値に差があるがどうかわからない

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.1973, 自由度 = 114.881, P値 = 0.844
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.460391 2.014706
標本推定値:
平均値x 平均値y
39.21978 39.44262
有意ではない。平均値に差があるがどうかわからない

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.7319, 第1自由度 = 90, 第2自由度 = 60, P値 = 0.1781
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.4543745 1.1533524
標本推定値:
分散比
0.7318971
有意。(Welchの方法)を使用する。

>
差が有意ではないので、Bq値を求められない。
39.4-39.2 = 0.2
0.2 * 0.47 = 0.09

52:名無しに影響はない(栃木県)
12/04/14 09:46:43.62 PzUMpoQ1
5. n=62 茹で2回
gr2 <- c(37, 31, 37, 47, 38, 39, 42, 38, 40, 33, 41, 42, 35, 36, 43, 33, 42, 49, 41, 38, 39, 36, 48, 39, 33, 35, 32, 25, 35, 38, 32, 45 ,
37, 44, 49, 30, 37, 35, 41, 44, 32, 36, 29, 33, 45, 43, 33, 33, 46, 43, 48, 39, 31, 36, 41, 40, 32, 34, 43, 38, 39, 44)
> mean(x)
[1] 38.29032
> var(x)
[1] 28.89794
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = 0.9616, 自由度 = 151, P値 = 0.3378
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -0.9803271 2.8392424
標本推定値:
平均値x 平均値y
39.21978 38.29032
有意。平均値に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = 0.9874, 自由度 = 142.202, P値 = 0.3251
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -0.9313193 2.7902346
標本推定値:
平均値x 平均値y
39.21978 38.29032
有意。平均値に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.3225, 第1自由度 = 90, 第2自由度 = 61, P値 = 0.2459
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.8234076 2.0803142
標本推定値:
分散比
1.322511
有意。(Welchの方法)を使用する。

>
39.2-38.2 = 1
1 * 0.47 = 0.47

バックグラウンドとの比較。試料20g
       袋*, 未茹で*,茹で1回 ,茹で2回*
===============================================
差(CPS)   -1.0 ,   2.1 ,   0.2 ,   -1.0
量(Bq )  -0.47,   0.99,   0.09,   -0.47
(*印;有意, 無印;有意ではない)


53:名無しに影響はない(栃木県)
12/04/14 09:47:09.40 PzUMpoQ1
回帰分析

y <- c(43, 51, 38, 37, 45, 38, 41, 42, 35, 35, 37, 45, 39, 37, 41, 43, 46, 38, 49, 33, 35, 35, 43, 49, 50, 33, 43, 45, 48, 50, 39, 21, 41, 41, 46 ,
37, 38, 40, 51, 37, 38, 54, 36, 25, 36, 38, 45, 53, 32, 42, 50, 37, 36, 46, 60, 34, 50, 48, 34, 30, 37, 34, 31, 34, 39 ,
37, 31, 37, 47, 38, 39, 42, 38, 40, 33, 41, 42, 35, 36, 43, 33, 42, 49, 41, 38, 39, 36, 48, 39, 33, 35, 32, 25, 35, 38, 32, 45 ,
39, 27, 37, 44, 49, 49, 38, 48, 56, 35, 42, 41, 38, 34, 40, 27, 36, 40, 31, 38, 40, 29, 37, 37, 37, 43, 34, 39, 41, 41, 37 ,
46, 40, 38, 33, 55, 44, 53, 39, 47, 41, 39, 31, 47, 44, 36, 38, 47, 33, 34, 36, 39, 44, 40, 55, 34, 36, 40, 31, 50, 53, 50 ,
37, 44, 49, 30, 37, 35, 41, 44, 32, 36, 29, 33, 45, 43, 33, 33, 46, 43, 48, 39, 31, 36, 41, 40, 32, 34, 43, 38, 39, 44)
x <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 , 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 , 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> result<-lm(y~x)
> result

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
41.179 -1.502

> plot(x,y,main="Regression line")
> abline(result,col="red")
>

3.補足コメント

インスペクターによるやさしおの測定では、1.819個 / (分・100mg)なので、インスペクターの計数値からの換算計数は 0.47 Bq/CPM となる。
1.502 * 0.47 = 0.70
0.70 Bq/20g・回 減少する。
なお、べつに同様な事を行ったものがある。これは、食べる予定のうどんからキッチンペーパーに入る程度の分量をサンプリングした場合で、
2回茹でたほう(41.8-38.4=3.4 CPM, 12.4g)が、1回(41.7-38.4=1.9 CPM 33.0g)だけよりも高濃度という結果になった。
茹で方に問題があるのか、水道水が汚染されていたか、乾燥中に汚染されたか、等の原因が考えられる。
一番可能性のあるのは、攪拌不備による濃度分布(一部分高濃度なところがあり、高濃度の部分の試料を採取)で、
少量(50g以下)の実験室レベルの実験からテストプラント(100kg以下)に移行するときに現れる問題です。
バックグラウントと袋の比較で、線量の減少が観察された。キッチンペーパー6枚(3回重ね折り)+ポリエチレン 0.04mm3枚で遮蔽可能な放射線はα線だけである。
ポリエチレンはゴムを除くと比較的水素が通りやすい膜である。つまり、α線が透過できることを示している。

54:名無しに影響はない(栃木県)
12/04/14 13:49:48.14 PzUMpoQ1
1.測定対象
「アルミホイル(厚さ 11um, 中国製)」の測定。
インスペクターによる食品測定を目的に色々やっていたが、使用している機材が汚染されているらしく
α線らしきものを検出した。>>39-53 α線かどうかの確認作業を行った。

使用している機材は、以下のとおり。
台、床面より45cmの高さ、35*40cm。この上にダンボール製箱(35*40cm)を置き、上に鉄板(厚さ1mm)をすいて机様に加工。
ダンボール内に水入りポリタンク(URLリンク(item.rakuten.co.jp))を置いてある。
マンテンの棚用の鋼材を井桁に組み、インスペクターを置くと下に約3cmの空間がとれるようにした。
インスペクターは汚染を防ぐために常に食品にも使えるポリ袋(ユニパック I-4, ポリエチレン 0.04mm厚)の中に保管した。
ポリエチレンフィルムのガスの透過性については下記参照。
URLリンク(www.agc.com)
URLリンク(www.as-1.co.jp)
アルミホイルは、インスペクターを包んだポリ袋の外側、井桁の上にすいた。

3.補足コメント
有意差が得られず、α線検出とはならなかった。
紙6枚でβ線を遮蔽できるのか、ちょっとわけがわからない状態。


55:名無しに影響はない(栃木県)
12/04/14 13:53:05.50 PzUMpoQ1
2.測定結果
生データは以下のとおり。連続投稿禁止の制限に引っかかって途中でちぎれるかも。
1. n=30 BG
x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41)
> mean(x)
[1] 43.9
> var(x)
[1] 68.02414
>

2. n=35 試料
x <- c(42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47)
> mean(x)
[1] 40.74286
> var(x)
[1] 26.96134
>

3. n=33 BG
x <- c(38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38)
> mean(x)
[1] 39.69697
> var(x)
[1] 44.4678
>

4. n=33 試料
x <- c(40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43)
> mean(x)
[1] 39.84848
> var(x)
[1] 30.88258
>

5. n=33 BG
x <- c(34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
> mean(x)
[1] 37.90909
> var(x)
[1] 41.52273
>

56:名無しに影響はない(栃木県)
12/04/14 13:54:55.77 PzUMpoQ1
4.データ貼り付け
全体の分析

x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 , 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.35976
> var(x)
[1] 44.36671
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 3.6123, 第1自由度 = 4, 第2自由度 = 159, P値 = 0.007568
有意。群別の差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.1988, 自由度 = 4, P値 = 0.08456
有意。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.6566, 第1自由度 = 4.000, 第2自由度 = 78.113, P値 = 0.03896
有意。群別の差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.2195122 1.219512
25 7 4.2682927 5.487805
30 18 10.9756098 16.463415
35 43 26.2195122 42.682927
40 57 34.7560976 77.439024
45 24 14.6341463 92.073171
50 10 6.0975610 98.170732
55 2 1.2195122 99.390244
60 0 0.0000000 99.390244
65 1 0.6097561 100.000000
>

57:名無しに影響はない(栃木県)
12/04/14 13:56:03.19 PzUMpoQ1
バックグラウンドと試料の比較
x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0068, 第1自由度 = 1, 第2自由度 = 162, P値 = 0.9346
有意ではない。バックグラウンドと試料の差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.2786, 自由度 = 1, P値 = 0.004012
有意。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0075, 第1自由度 = 1.000, 第2自由度 = 161.976, P値 = 0.9309
有意ではない。バックグラウンドと試料の差異は不明。

>


58:名無しに影響はない(栃木県)
12/04/14 13:56:49.19 PzUMpoQ1
繰り返しの比較

1. n=96 BG
x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 40.39583
> var(x)
[1] 55.92588
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 5.7929, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.004256
有意。繰り返しによる差異ある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.2143, 自由度 = 2, P値 = 0.3305
先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.0623, 第1自由度 = 2.000, 第2自由度 = 60.331, P値 = 0.00928
有意。繰り返しによる差異ある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 2.083333 2.083333
25 5 5.208333 7.291667
30 12 12.500000 19.791667
35 26 27.083333 46.875000
40 28 29.166667 76.041667
45 14 14.583333 90.625000
50 6 6.250000 96.875000
55 2 2.083333 98.958333
60 0 0.000000 98.958333
65 1 1.041667 100.000000
>


59:名無しに影響はない(栃木県)
12/04/14 13:57:34.87 PzUMpoQ1
2. n=68 試料
x <- c(42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 40.30882
> var(x)
[1] 28.63455
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.4707, 第1自由度 = 1, 第2自由度 = 66, P値 = 0.4951
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.1498, 自由度 = 1, P値 = 0.6987
有意。先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.4688, 第1自由度 = 1.000, 第2自由度 = 64.946, P値 = 0.496
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 2 2.941176 2.941176
30 6 8.823529 11.764706
35 17 25.000000 36.764706
40 29 42.647059 79.411765
45 10 14.705882 94.117647
50 4 5.882353 100.000000
>


60:名無しに影響はない(栃木県)
12/04/14 13:58:10.33 PzUMpoQ1
バックグラウンドと試料の比較

1. n=96 BG
gr1 <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
> mean(x)
[1] 40.39583
> var(x)
[1] 55.92588

2. n=68 試料
gr2 <- c(42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43)
> mean(x)
[1] 40.30882
> var(x)
[1] 28.63455

> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = 0.0822, 自由度 = 162, P値 = 0.9346
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.004175 2.178194
標本推定値:
平均値x 平均値y
40.39583 40.30882
有意ではない。差があるかどうか不明

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = 0.0869, 自由度 = 161.976, P値 = 0.9309
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -1.891316 2.065336
標本推定値:
平均値x 平均値y
40.39583 40.30882
有意ではない。差があるかどうか不明

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.9531, 第1自由度 = 95, 第2自由度 = 67, P値 = 0.004175
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 1.240164 3.022964
標本推定値:
分散比
1.953091
有意。分散が一様ではないので(Welchの方法)を使用する
>


61:名無しに影響はない(やわらか銀行)
12/04/14 15:50:01.69 RDG7UOvf
>>54
3.補足コメント
有意差が得られず、α線検出とはならなかった。
紙6枚でβ線を遮蔽できるのか、ちょっとわけがわからない状態。
--

お疲れ様です。
紙一枚でα線を遮断できます。
紙を6枚以上重ねると低エネルギーの一部のβ線が遮断されるはずです。


62:名無しに影響はない(栃木県)
12/04/14 20:14:16.88 PzUMpoQ1
>>61
汚染されていない紙があればよいのですが。
スーパーで輸入物の紙を探してみます。

さて今回は、
1.測定対象
「しいたけ(2012.04.09 自宅裏より収穫、4日間乾燥)」 の分析結果
2.測定結果
まずは生データ。
1. n=32 BG
x <- c(39, 38, 36, 39, 39, 35, 30, 39, 40, 27, 41, 38, 38, 49, 46, 40, 38, 33, 44, 41, 40, 49, 52, 28, 34, 40, 42, 42, 43, 30, 38, 41)

2. n=41 試料
x <- c(67, 58, 48, 47, 71, 62, 50, 52, 55, 58, 57, 44, 58, 53, 56, 62, 32, 60, 45, 67, 48, 49, 53, 47, 36, 66, 53, 54, 54, 55, 50, 61, 60, 59, 42, 50, 56, 50, 53, 31, 47)

3. n=39 BG
x <- c(44, 42, 50, 32, 46, 48, 44, 29, 35, 52, 43, 46, 33, 54, 35, 48, 35, 43, 43, 42, 42, 37, 30, 40, 51, 30, 50, 36, 41, 46, 52, 45, 31, 45, 33, 41, 34, 36, 31)

4. n=31 試料
x <- c(56, 59, 47, 49, 51, 67, 51, 43, 49, 49, 51, 50, 54, 58, 47, 58, 58, 63, 50, 52, 50, 54, 56, 60, 46, 49, 60, 57, 64, 67, 50)

5. n=31 BG
x <- c(47, 33, 47, 37, 35, 42, 44, 42, 42, 35, 55, 43, 44, 34, 33, 45, 37, 36, 37, 44, 43, 41, 32, 42, 32, 39, 33, 44, 43, 38, 45)

63:名無しに影響はない(栃木県)
12/04/14 20:15:26.65 PzUMpoQ1
4. データ貼り付け
全体の分析
x <- c(39, 38, 36, 39, 39, 35, 30, 39, 40, 27, 41, 38, 38, 49, 46, 40, 38, 33, 44, 41, 40, 49, 52, 28, 34, 40, 42, 42, 43, 30, 38, 41 ,
67, 58, 48, 47, 71, 62, 50, 52, 55, 58, 57, 44, 58, 53, 56, 62, 32, 60, 45, 67, 48, 49, 53, 47, 36, 66, 53, 54, 54, 55, 50, 61, 60, 59, 42, 50, 56, 50, 53, 31, 47 ,
44, 42, 50, 32, 46, 48, 44, 29, 35, 52, 43, 46, 33, 54, 35, 48, 35, 43, 43, 42, 42, 37, 30, 40, 51, 30, 50, 36, 41, 46, 52, 45, 31, 45, 33, 41, 34, 36, 31 ,
56, 59, 47, 49, 51, 67, 51, 43, 49, 49, 51, 50, 54, 58, 47, 58, 58, 63, 50, 52, 50, 54, 56, 60, 46, 49, 60, 57, 64, 67, 50 ,
47, 33, 47, 37, 35, 42, 44, 42, 42, 35, 55, 43, 44, 34, 33, 45, 37, 36, 37, 44, 43, 41, 32, 42, 32, 39, 33, 44, 43, 38, 45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 45.62644
> var(x)
[1] 90.80184
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 40.26, 第1自由度 = 4, 第2自由度 = 169, P値 < 2.2e-16
有意。群別の差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 10.6791, 自由度 = 4, P値 = 0.03042
有意。先の分散分析が無効

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 41.9037, 第1自由度 = 4.000, 第2自由度 = 83.865, P値 < 2.2e-16
有意。群別の差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 3 1.7241379 1.724138
30 20 11.4942529 13.218391
35 26 14.9425287 28.160920
40 37 21.2643678 49.425287
45 28 16.0919540 65.517241
50 28 16.0919540 81.609195
55 17 9.7701149 91.379310
60 9 5.1724138 96.551724
65 5 2.8735632 99.425287
70 1 0.5747126 100.000000
>


64:名無しに影響はない(栃木県)
12/04/14 20:15:59.17 PzUMpoQ1
BGと試料の比較
x <- c(39, 38, 36, 39, 39, 35, 30, 39, 40, 27, 41, 38, 38, 49, 46, 40, 38, 33, 44, 41, 40, 49, 52, 28, 34, 40, 42, 42, 43, 30, 38, 41 ,
67, 58, 48, 47, 71, 62, 50, 52, 55, 58, 57, 44, 58, 53, 56, 62, 32, 60, 45, 67, 48, 49, 53, 47, 36, 66, 53, 54, 54, 55, 50, 61, 60, 59, 42, 50, 56, 50, 53, 31, 47 ,
44, 42, 50, 32, 46, 48, 44, 29, 35, 52, 43, 46, 33, 54, 35, 48, 35, 43, 43, 42, 42, 37, 30, 40, 51, 30, 50, 36, 41, 46, 52, 45, 31, 45, 33, 41, 34, 36, 31 ,
56, 59, 47, 49, 51, 67, 51, 43, 49, 49, 51, 50, 54, 58, 47, 58, 58, 63, 50, 52, 50, 54, 56, 60, 46, 49, 60, 57, 64, 67, 50 ,
47, 33, 47, 37, 35, 42, 44, 42, 42, 35, 55, 43, 44, 34, 33, 45, 37, 36, 37, 44, 43, 41, 32, 42, 32, 39, 33, 44, 43, 38, 45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 160.6906, 第1自由度 = 1, 第2自由度 = 172, P値 < 2.2e-16
有意。バックグラウンドと試料との差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 4.0066, 自由度 = 1, P値 = 0.04532
有意。先の分散分析が無効

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 149.1595, 第1自由度 = 1.000, 第2自由度 = 131.373, P値 < 2.2e-16
有意。バックグラウンドと試料との差異がある。

>


65:名無しに影響はない(栃木県)
12/04/14 20:16:37.61 PzUMpoQ1
繰り返しによる影響

1. n = 102 BG 繰り返し数 =3
x <- c( 39, 38, 36, 39, 39, 35, 30, 39, 40, 27, 41, 38, 38, 49, 46, 40, 38, 33, 44, 41, 40, 49, 52, 28, 34, 40, 42, 42, 43, 30, 38, 41 ,
44, 42, 50, 32, 46, 48, 44, 29, 35, 52, 43, 46, 33, 54, 35, 48, 35, 43, 43, 42, 42, 37, 30, 40, 51, 30, 50, 36, 41, 46, 52, 45, 31, 45, 33, 41, 34, 36, 31 ,
47, 33, 47, 37, 35, 42, 44, 42, 42, 35, 55, 43, 44, 34, 33, 45, 37, 36, 37, 44, 43, 41, 32, 42, 32, 39, 33, 44, 43, 38, 45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 40.07843
> var(x)
[1] 38.52844
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.7926, 第1自由度 = 2, 第2自由度 = 99, P値 = 0.4555
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.9036, 自由度 = 2, P値 = 0.2341
有意。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.7678, 第1自由度 = 2.000, 第2自由度 = 65.874, P値 = 0.4681
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 3 2.9411765 2.941176
30 18 17.6470588 20.588235
35 25 24.5098039 45.098039
40 34 33.3333333 78.431373
45 14 13.7254902 92.156863
50 7 6.8627451 99.019608
55 1 0.9803922 100.000000
>


66:名無しに影響はない(栃木県)
12/04/14 20:17:12.22 PzUMpoQ1
2. n = 72 試料 13.4g 繰り返し数 =2
x <- c( 67, 58, 48, 47, 71, 62, 50, 52, 55, 58, 57, 44, 58, 53, 56, 62, 32, 60, 45, 67, 48, 49, 53, 47, 36, 66, 53, 54, 54, 55, 50, 61, 60, 59, 42, 50, 56, 50, 53, 31, 47 ,
56, 59, 47, 49, 51, 67, 51, 43, 49, 49, 51, 50, 54, 58, 47, 58, 58, 63, 50, 52, 50, 54, 56, 60, 46, 49, 60, 57, 64, 67, 50)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 53.48611
> var(x)
[1] 59.57727
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2697, 第1自由度 = 1, 第2自由度 = 70, P値 = 0.6051
有意ではない。繰り返しによる差異が不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.7321, 自由度 = 1, P値 = 0.05338
有意。先の分散分析が無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.2959, 第1自由度 = 1.000, 第2自由度 = 69.781, P値 = 0.5882
有意ではない。繰り返しによる差異が不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
30 2 2.777778 2.777778
35 1 1.388889 4.166667
40 3 4.166667 8.333333
45 14 19.444444 27.777778
50 21 29.166667 56.944444
55 16 22.222222 79.166667
60 9 12.500000 91.666667
65 5 6.944444 98.611111
70 1 1.388889 100.000000
>


67:名無しに影響はない(栃木県)
12/04/14 20:18:27.54 PzUMpoQ1
BGと試料の比較

1. n = 102 BG 繰り返し数 =3
gr1 <- c( 39, 38, 36, 39, 39, 35, 30, 39, 40, 27, 41, 38, 38, 49, 46, 40, 38, 33, 44, 41, 40, 49, 52, 28, 34, 40, 42, 42, 43, 30, 38, 41 ,
44, 42, 50, 32, 46, 48, 44, 29, 35, 52, 43, 46, 33, 54, 35, 48, 35, 43, 43, 42, 42, 37, 30, 40, 51, 30, 50, 36, 41, 46, 52, 45, 31, 45, 33, 41, 34, 36, 31 ,
47, 33, 47, 37, 35, 42, 44, 42, 42, 35, 55, 43, 44, 34, 33, 45, 37, 36, 37, 44, 43, 41, 32, 42, 32, 39, 33, 44, 43, 38, 45)
> mean(x)
[1] 40.07843
> var(x)
[1] 38.52844

2. n = 72 試料 13.4g 繰り返し数 =2
gr2 <- c( 67, 58, 48, 47, 71, 62, 50, 52, 55, 58, 57, 44, 58, 53, 56, 62, 32, 60, 45, 67, 48, 49, 53, 47, 36, 66, 53, 54, 54, 55, 50, 61, 60, 59, 42, 50, 56, 50, 53, 31, 47 ,
56, 59, 47, 49, 51, 67, 51, 43, 49, 49, 51, 50, 54, 58, 47, 58, 58, 63, 50, 52, 50, 54, 56, 60, 46, 49, 60, 57, 64, 67, 50)
> mean(x)
[1] 53.48611
> var(x)
[1] 59.57727


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch