高校数学の質問スレPART349at MATH
高校数学の質問スレPART349 - 暇つぶし2ch529:132人目の素数さん
13/03/30 23:16:10.37
>>523
かなり迂遠なやり方だけど一応できたんで

a[n]=Σ[k=1,n]C[2k,k]/4^k
G(x,y) = Σ[k=0,∞] (C[2k,k]/(k+1))(xy)^k とする。
カタラン数の母関数から
G(x,y) = (1-√(1-4xy))/(2xy)
(∂/∂y)(yG(x,y)) = (∂/∂y)(Σ[k=0,∞] (C[2k,k]/(k+1))x^ky^(k+1))
= Σ[k=0,∞]C[2k,k]x^ky^k 一方、
(∂/∂y)(yG(x,y)) = (∂/∂y)( (1-√(1-4xy))/(2x)) = 1/√(1-4xy)
∴Σ[k=0,∞]C[2k,k]x^ky^k = 1/√(1-4xy) ……(*)
Σ[k=1,∞]C[2k,k]x^ky^k = 1/√(1-4xy) - 1
Σ[k=0,∞]y^k Σ[k=1,∞]C[2k,k]x^ky^k = (1/(1-y))(1/√(1-4xy) - 1)
Σ[k=1,∞](Σ[i=1,k]C[2i,i]x^i)y^k = (1/(1-y))(1/√(1-4xy) - 1)
x=1/4を代入して
Σ[k=1,∞](Σ[i=1,k]C[2i,i]/4^i)y^k = (1/(1-y))(1/√(1-y) - 1)
Σ[k=1,∞]a[k]y^k = (1-y)^(-3/2)-(1-y)^(-1)
あとは左辺のべき級数展開で
a[n]=(2n+1)!/(n!n!4^n)-1 = (2n+1)C[2n,n]/4^n-1

カタラン数とか使わなくても(*)まで辿りつくことはできるが
なんとなくカタラン数っぽい形をしてたから使った。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch