13/03/20 06:36:30.33
>>531
つづき
URLリンク(ja.wikipedia.org)
歴史
この仮説は 19 世紀に集合論の創始者、ゲオルク・カントールによって提出された。彼自身この解決に熱心に取り組んだことが知られている。
可算濃度より連続体濃度の方が大きいことは、カントールの対角線論法によって証明されている。
カントールは当初、連続体仮説も証明することはそれほど難しくないと考えていたが、遂に証明することはできなかった。
1900年、パリで開かれた国際数学者会議においてヒルベルトは彼の有名な 23 の問題の第一番にこの連続体仮説を取り上げた。
その後、1940年にゲーデルは任意の ZF のモデルにおいて構成可能集合全体のクラス L が連続体仮説をみたすことを証明し、「ZFC からは連続体仮説の否定は証明できない」ことを示した。
さらに1963年、ポール・コーエンは強制法と呼ばれる新しい手法を用いて「ZFC から連続体仮説を証明することは出来ない」ことを示した。
これらの結果から ZFC に連続体仮説を加えても、またはその否定を加えても矛盾は発生しないこと、つまり連続体仮説の ZFC からの独立性が示され、連続体仮説は解決を見た
(これらの結果は全て ZF の無矛盾性を仮定している)。
コーエンはこの業績により、1966 年にフィールズ賞を受賞している。
つづく