12/08/17 05:42:36.90
>>351
(>>355の続き)
そういえば、「x÷xy」だけではa=xyとおけるのか否かも曖昧だ。
何故ならa=xyとおいて、「x÷xy」を「x÷a」と表したとすると
「x÷a」にa=xyを代入して元に戻したときの式の形が「x÷(xy)」となって、
これは元の式「x÷xy」とは違う形になり、「x÷xy」の解釈が一意だったことになるため。
そして、元の式がx、yの2つの文字の式で定義されたことに対し、
元の式「x÷xy」が本来x、aの2つの文字で定義される式だった?
そうだったのか?文字「a」って何だったんだ?ということになる。
仮にa=xyとおけるようなら、xとyを除くa、b、c、d、「e」、f、g、「i」、…
などなどの文字がすべて等しいと仮定したことになる
(eやiを特別「」で括った意味は分かるな?
一応、「e=…」とか「i=…」とおくことも代数的には出来るぞ。
そうおくと、紛らわしくなることが少なくないけどな)。
こういったことも、「x÷xy」という式の解釈の仕方による。
「x÷(xy)」と解釈すれば、場合によっては「a=xy」とおける。
まあ、義務教育では、そのようにおいてよいのだろう。
関数などの位相を考える以上はそのようにはおけない。
定数「e」をどう表すかという点で引っ掛かりが生じかねない。
「i」についても同じ感じ。
「x÷x×y」と解釈すれば、「a=xy」とはおけない。