12/08/17 04:09:17.88
>>351
(>>353の続き)
では立ち戻って>>336の先頭の部分の
>「xy」となる式は「1×x×y」「x×x×y×(1/x)」等、無数にあるわけだが、これらをどう否定するんだ?
について考えることにしよう。「x÷xy」の÷の直後にある文字はxなので、÷の直後に入る文字というか数はxしかあり得ない。
普通、÷の直後に「1」があるとは考えない。誰もが必ずしもそう考える訳ではなく、一般的にいえるようなことではない。
よって、「1×x×y」などは否定される。一方、「x×x×y×(1/x)」などは、
xが「÷」の直後にあるという条件を満たしているから一概には否定出来ない。
「x÷xy」という曖昧な表記では、「x÷xy」は「x÷x×x×y×(1/x)」と表記しても何らおかしくない。
「x÷(xy)」と解釈すれば、「x÷(x×x×y×(1/x))」は「x÷(xy)」に等しくなり、
「x÷x×y」と解釈すれば、「x÷x×x×y×(1/x)」は「、「x÷x×y」に等しくなる。
どちらに解釈してもいい。さ~あ、どちらでもよいですね、どうしましょうか。
両方とも簡単には否定出来ませんね。否定出来ない以上、両方ともありですね。
結局そう考えざるを得ない。せいぜい答えを一意にしたいなら「x÷(xy)」と明記することだ。
0を除いて考えれば、掛け算×と割り算÷は互いに逆の演算にある。
つまり群論でいえば、掛け算「a×b」をすることは積「a・b=ab」を定めること、
割り算「a÷b」をすることは積「ab^{-1}」を定めることにあたる。
そして、「a×b」を計算する式「a×b=ab」、反対に戻す式「ab=a×b」も、
両辺を入れ替えただけで「a×b=ab」が(群論的にも)定義にかなっていて、
計算や戻す操作が簡単、式が単純で美しく分かりやすい、などなど感覚的事情もある。
更に「ab」を「a×b」と捉えてよいのか実に微妙。
そういった事情から、群論で考えると「x÷xy」は
「x(xy)^{-1}」と表しても「xx^{-1}y」でもどちらでもおかしくない。
当然両者の結果は通常異なる。可換性から「x(xy)^{-1}」なら「y^{-1}」になり、
「xx^{-1}y」であれば「y」になる。