12/09/06 06:23:27.86
>>365-366
どもです
「これを IU 幾何 ( inter-universal geometry ) と呼ぶ。 」とあります(下記)
URLリンク(www2.math.kyushu-u.ac.jp)
数論的 log scheme の圏論的表示 (12-Jul-2003)
望月 新一 氏 ( 京大数理研 )
-------------------------------------------------------------------------------
( 今回は 「講演者が言ひたかつたことが書いてない」 典型例になりさうです。)
Noetherian scheme X に対し、その上の有限型 schemes のなす圏
Sch(X) を考へると、 Sch(X) の圏同値類は X の同型類を決定する;
Isom(X,Y) = Isom(Sch(Y), Sch(X)).
これと
Hom(A,B) = Mor(Spec(B), Spec(A))
( 左辺は可換環の準同型の集合、右辺は局所環付き空間の射の集合 )
との類似に注目したい。
これは 新しい幾何の世界への入口である。
但し、 scheme 論では上の等式により affine scheme を貼合せることが出来たが、
ここでは通常の scheme 論を安易にまねて貼合せをするのではなく、
一般の圏を、圏同値を除いて、扱ふ。
( つまり 圏 が基本的幾何的対象。)
これを IU 幾何 ( inter-universal geometry ) と呼ぶ。
圏として Sch(X) の形のものだけ考へてゐたのでは
本質的に ( 通常の scheme 以上に ) 新しい対象は出て来ない。
新しい幾何を得るためには圏 Sch(X) を少し 「狭める」 必要がある。
この様な新しい幾何的対象 ( 圏 ) として、現在
次の二つのものが考へられてゐる:
(1) Loc* 型圏 ( ここでは " F_1 上の Frobenius " が定義出来る。)
(2) 分布版 ( これにより " F_1 上の楕円曲線の族の分類射 " が定義出来る。)
(以下略)