12/08/14 07:17:20.69
>>253
URLリンク(en.wikipedia.org)
つづき
Many types of objects in abstract algebra can satisfy chain conditions, and usually if they satisfy an ascending chain condition, they are called Noetherian in her honor.
By definition, a Noetherian ring satisfies an ascending chain condition on its left and right ideals, whereas a Noetherian group is defined as a group in which every strictly ascending chain of subgroups is finite.
A Noetherian module is a module in which every strictly ascending chain of submodules breaks off after a finite number.
A Noetherian space is a topological space in which every strictly increasing chain of open subspaces breaks off after a finite number of terms; this definition is made so that the spectrum of a Noetherian ring is a Noetherian topological space.
The chain condition often is "inherited" by sub-objects. For example, all subspaces of a Noetherian space, are Noetherian themselves;
all subgroups and quotient groups of a Noetherian group are likewise, Noetherian; and, mutatis mutandis, the same holds for submodules and quotient modules of a Noetherian module.
All quotient rings of a Noetherian ring are Noetherian, but that does not necessarily hold for its subrings.
The chain condition also may be inherited by combinations or extensions of a Noetherian object.
For example, finite direct sums of Noetherian rings are Noetherian, as is the ring of formal power series over a Noetherian ring.
つづく