現代数学の系譜11 ガロア理論を読む5at MATH
現代数学の系譜11 ガロア理論を読む5 - 暇つぶし2ch2:132人目の素数さん
12/05/26 16:15:32.85
スレリンク(math板) 前スレ 現代数学の系譜11 ガロア理論を読む3 >>1より
URLリンク(detail.chiebukuro.yahoo.co.jp)
数学の歴史に興味ある方にお尋ねします。「現代数学の系譜11、アーベル、ガロア、...noranekokuma2004さん 質問日時: 2011/9/18

「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」にチャレンジしております。

ベストアンサーに選ばれた回答siolaglebaさん 回答日時:2011/9/21

ガロアの論文が、どんなものか知りたくて、私もこの本を読もうとしました。
高名な数学者さえ理解出来なかった論文とは、一体何がどのように書かれているのか興味があったからです。すでにガロア理論を知っていたので、軽く考えていました。

が、ガロアの論文は解りにくいモノでした。現在の整理された数学書の書き方に慣れているためか、ガロアの論文を少し眺めてみて、弱気になってしまいました。
自分には、読みたい数学は一杯あるし、ガロア理論も知っている。他の数学書に取りかかった方が良いと。諦めるのが早かったかもしれません。

ラグランジュの分解式は、方程式の可解性を議論するなかで、べき根拡大を考えるとき、使ったように記憶しています。
ラグランジュは、3次・4次方程式の解明に成功しましたが、5次方程式は失敗しました。が、ラグランジュの研究は無駄ではなかったことの証が、ラグランジュ分解式と思います。
(引用おわり)
(再録)
ガロアの書き方が、現代の主流の置換群の書き方と違う
これについては、ブルーバックス 「ガロアの理論」 中村亨に詳しい
URLリンク(www.nikkei.com)
ガロアの群論 中村亨著 天才数学者の問題意識探る 2010/6/30付

3:132人目の素数さん
12/05/26 16:15:54.76
(再録)
ただ、ブルーバックス 「ガロアの理論」 中村亨だけでは、本当の面白さは分からない

やはり、アーベル ガロア 群と代数方程式 (現代数学の系譜 11) を傍に置きながら読まないと (このスレでは主にこれを取り上げる)
URLリンク(www.amazon.co.jp)
出版社: 共立出版 (1975/4/20)

4:132人目の素数さん
12/05/26 16:16:21.68
(再録)
倉田令二朗も、ガロアのアイデアにそった解説を書いている

URLリンク(books.google.co.jp)
ガロアを読む: 第1論文研究
著者 倉田令二朗
出版社 日本評論社, 1987

URLリンク(ameblo.jp)
2011-10-08 03:55:22
倉田令二朗著『ガロアを読む』第1論文研究 その2

URLリンク(ameblo.jp)
2011-10-19 03:50:26
破天荒の人 倉田令二朗

5:132人目の素数さん
12/05/26 16:55:29.13
>>3
現代数学の系譜 11によれば、ガロア論文では、現代的な群や体の定義は出てこない

URLリンク(ja.wikipedia.org)
ガロア理論(ガロア-りろん、Galois theory)は、基本的には代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する代数学の理論をさす。
1830年代におけるエヴァリスト・ガロアによる代数方程式のべき根による可解性などの研究に端を発しているためこの名前がつけられている。
数学的構造についての最も初期の研究であり、圏と関手の考え方を含むような非常に現代的なパラダイムにもとづく理論だと見なされている。
実際にガロアは、方程式の研究において未知であった群や体の考えを用いていた。
現代の代数学はこの理論から始まった。ガロア理論を、方程式だけでなくそれの元になった初期の基本的な代数まで含めてもよいだろう。

ガロア理論によれば、"ガロア拡大" と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。

6:132人目の素数さん
12/05/26 16:55:52.16
(再録)
ガロアの人物については下記

URLリンク(ja.wikipedia.org)
エヴァリスト・ガロア
(抜粋)
新資料の発見

決闘の原因と言われていた女性の素性が明らかとなった。
彼女の名はステファニー・フェリス・ポトラン・デュモテルといい、ガロアが最後に暮らしたフォートリエ療養所の医師で所長だったジャン・ルイ・ポトラン・デュモテルの娘であった。
彼らは親子共に親切な人物で、ガロアは次第にステファニーに恋愛感情を抱くようになって求婚したらしく、それに対する5月14日付でのステファニーによる断りの手紙の文面が、ガロア自身の筆跡でシュヴァリエへの書簡の裏に転記されていた。
その内容は文面を見る限り礼儀正しいものであり、少なくとも残された文章を見た印象では彼女が「つまらない色女」と表現されるような人物などではなく、そもそもガロアの遺書が真実を記したものとは言い切れないことが明らかになった。

その上でリガテリは、決闘であるならば勝つ可能性もあるのに、ガロアの死を確信した遺書に対する不自然さを指摘し、決闘の真相を次のように解釈している。

ステファニーに失恋したガロアは、「民衆の友の会」の会員と共に民衆を蜂起させる方法を考えていた時、ガロアが自分が犠牲となってその機会を作ることを提案した。
(作中では「D」と名前を明確にしていないが)デュシャートレがその相手を務めることとなり、ガロアは共和主義者の感情を煽るためにわざと無念を強調した遺書をしたためた。
そして、予定通り決闘を装った工作が行われてガロアは死亡し、あとは葬儀において蜂起するだけとなった。
ところが葬儀の当日、フランスの英雄であるジャン・マクシミリアン・ラマルク将軍の訃報が伝わり、ならばそれを契機に蜂起した方が良いと急遽予定が変更された、ということである(その後の暴動の様子はヴィクトル・ユーゴーの『レ・ミゼラブル』に詳しい)。

7:132人目の素数さん
12/05/26 16:56:19.86
>>4 補足

URLリンク(d.hatena.ne.jp)
2008-03-15
倉田令二朗、超準解析!(感謝を込めて)
(抜粋)
「まずは基礎論をやって、つぎに、超準解析、そうノンスタンダード・アナリシスをやろう。イプシロンデルタとか馬鹿なことをやっていないで、君たちの技術分野でも、これなら実にスマートに使えるんだ。
計算機による解析とかするんなら、これがいいんだ。」ということになった。
イプシロン-デルタ論法にかわる話を、大学に入って間もない、しかも理学部以外の学生に対してするので、教える側としては相当工夫しないと簡単には理解させることはできない。
それまでも毎回の配付資料の量の多さは異常だったが、ノンスタンダード・アナリシスになってからは、毎回の資料が30枚ほどになっていた。
いずれも汚ったない手書き文字のコピーなんだけど、いま思いだしても、非常に丁寧にわかりやすく作ってあった。

(数学者でもない私が口を挟むのもなんだが、超準解析は、いまでは多くの書籍もでて、当初は「ノンスタンダード・アナリシス」だったのに、いまでは「スタンダード」なアナリシスになった。
大学の講義でも広く扱われている。
倉田令二朗氏のすばらしさは、当然基礎論の大家でもあったのだが、30年もの昔にこの「ノンスタンダード・アナリシス」に最初に目をつけて独自に体系化し、さらに実学分野でも応用できるようにした点は、倉田令二朗氏によるところが非常に大きいと思う。)

8:132人目の素数さん
12/05/26 16:57:01.10
(再録)
溝口紀子氏。どうでも良いが、日経サイエンスに記事が出ていた。人の評価を気にせずやったと

URLリンク(www.saruhashi.net)
第31回 猿橋賞受賞者 溝口紀子氏の研究業績要旨 04/19/2011 17:16:03

受賞研究題目「爆発現象の漸近解析」
“Asymptotic analysis of blowup phenomena”

 溝口紀子氏は、べき乗の非線形項をもつ半線形熱方程式をはじめとする非線形放物型偏微分方程式の爆発現象の研究において目覚ましい成果を挙げてきた。

 微分方程式の解の最大値がある時刻Tに近づくと無限大に発散するとき、その解は時刻Tで爆発するという。
 べき乗の非線形項をもつ半線形熱方程式は燃焼現象を記述するモデルとみなされ、解の爆発は「発火」を意味する。
 1960年代半ばに藤田宏氏によって先駆的な結果が発表されて以来、爆発は微分方程式の分野で最も活発に研究されてきたテーマのひとつである。
 微分積分学の授業で教わるような、座標変数と時刻の関数として陽に表すことができる解は強解または古典解とよばれる。
 解が爆発すれば、その時点で、発散した値からの解の延長は不可能であり、解は強解としての意味を失う。
 しかし、関数に適当な試験関数を乗じて方程式を積分することで得られるような、微分の概念を広げた方程式を満たす解が存在する可能性があり、このような解は元の方程式の弱解とよばれる。
 爆発後弱解としても延長不可能な爆発を完全爆発、爆発後も弱解としては延長可能な爆発を不完全爆発とよぶ。
 燃焼を例にとると、完全爆発は「完全燃焼」に、不完全爆発は「不完全燃焼」に対応すると考えられる。
 半線形熱方程式の爆発に関する研究は長年完全爆発を対象としてきたが、1990代後半になって、ある条件のもとではこの弱解は有限時刻で爆発することが証明され、
 この時点ではじめて不完全爆発する解の存在は認識されたが、不完全爆発する解の爆発後の振る舞いについては未解決のまま残されていた。

9:132人目の素数さん
12/05/26 16:57:39.60
(再録)
>>1
そろそろ主題に戻ろう

>ベストアンサー:”が、ガロアの論文は解りにくいモノでした。現在の整理された数学書の書き方に慣れているためか、ガロアの論文を少し眺めてみて、弱気になってしまいました。”ですか?

ガロアの原論文(「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」)を読むための3つのポイントは
1.ガロア分解式(リゾルベント)
 V=Aa+Bb+Cc+・・・
 a,b,c・・・は、(重根を持たない)で問題の方程式の根、係数A,B,C・・・は根の置換で異なる値をとるように定める
2.置換群のガロア記法
a b c d・・・・k
b c d・・・・k a
c d・・・・k a b
・・・・・・・・・・・
k a b・・・・・i

注)今日、置換は普通はコーシーの記法
(a b c d・・・・k)
(a b c d・・・・k)
(直上の2行は大きな括弧で括られていると思ってください)

(コーシーの記法は説明不要と思うが、下記などが参考になろう)
URLリンク(homepage3.nifty.com)

10:132人目の素数さん
12/05/26 17:32:10.87
(再録)
>>15 つづき
3.ガロア分解式と置換群のガロア記法との対応

(V)| φV,φ1V,・・・・,φm-1V,
(V')| φV',φ1V',・・・・,φm-1V',
(V'')| φV'',φ1V'',・・・・,φm-1V'',
・・・・|・・・・・・・・・・・・・・・・・・・・・・・
(V''*)| φV''*,φ1V''*,・・・・,φm-1V''*,

注)V''*は、Vにダッシュ'がn-1個ついたもの(アスキーでは添え字が表現できないので)

1.ガロア分解式(リゾルベント)は、「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」P28
2.置換群のガロア記法は、「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」P30,31,36など
3.ガロア分解式と置換群のガロア記法との対応は、「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」P31

に記載がある。
なお、置換群のガロア記法は、ガロアの群論 中村亨著>>2に詳しい説明がある
ガロア分解式(リゾルベント)は、「ガロアを読む」倉田令二朗>>4 P110あたりに詳しい説明がある
ガロア分解式と置換群のガロア記法との対応は、あまり既存の本では強調されていない

なお、倉田は、13節”ガロア分解式”で、Vをガロア分解式とせず、以下で出てくるガロア方程式g(X)=0をガロア分解式と呼んでいる。
倉田の勘違いだろう。詳しくは、前スレ>>510-517をご参照

11:132人目の素数さん
12/05/26 17:52:28.99
(再録)
>>10
>なお、倉田は、13節”ガロア分解式”で、Vをガロア分解式とせず、以下で出てくるガロア方程式g(X)=0をガロア分解式と呼んでいる。
>倉田の勘違いだろう。詳しくは、スレ3>>510-517をご参照

訂正
下記藤原松三郎では、”ガロア分解式”は倉田の定義と同じ(P102)。これは初版昭和4年なので、この定義もあるのだろう
EdwardsやTignolでは、>>9の 一次式V=Aa+Bb+Cc+・・・をガロア分解式としている

(つづき)
1.ガロア分解式(リゾルベント)は、「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」P28
2.置換群のガロア記法は、「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」P30,31,36など
3.ガロア分解式と置換群のガロア記法との対応は、「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」P31

に記載がある。
なお、置換群のガロア記法は、ガロアの群論 中村亨著>>2に詳しい説明がある
ガロア分解式(リゾルベント)は、「ガロアを読む」倉田令二朗>>4 P110あたりに詳しい説明がある
ガロア分解式と置換群のガロア記法との対応は、あまり既存の本では強調されていない

下記藤原松三郎 代數學 P106あたりの記述が近いが、「ガロア分解式と置換群のガロア記法との対応」という捉え方はしていない
URLリンク(www.rokakuho.co.jp)
代數學  第二卷
A5/765頁 9450円(本体9000円+税5%) 978-4-7536-0026-7
藤原松三郎(理学博士) 著

第十一章 がろあノ方程式論
1. 代數的數體/2. 方程式ノがろあ群/3. がろあ分解式ノ簡約/4. 代數的ニ解カレル方程式/5. 圓周等分方程式/6. あーべる方程式/7. 素數次ノ方程式

12:132人目の素数さん
12/05/26 18:14:18.47
(再録)
ガロアの時代
今日のように、群をある演算(積)で閉じた集合として捉えられていない
体の漠然とした概念はあったろうが、同じようにある演算(積と和)で閉じた集合として捉えられていない

そこでガロアが今日の体の代わりに考えたのが、”ガロア分解式と置換群のガロア記法との対応”だと思う

>>11
さて、ガロアは
V、V'、V''、・・・・、V''*
注)V''*は、Vにダッシュ'がn-1個ついたもの(アスキーでは添え字が表現できないので)
を使って、次のガロア方程式を作る
F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)

1.この方程式は、例えば一般の5次方程式なら根の置換は120個あり
2.V、V'、V''、・・・・、V''*も、120個あり(5次の置換で異なる値をとるから)
3.F(x)は120次の方程式
4.そんなものを考えてどうなる?
5.どっこい、F(x)の120次の方程式をガロアは体の理論の代用に使ったのだ

例えば、重根を持たない場合、差積から判別式を作り、判別式の平方根を
ガロア方程式F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)に添加すると
ガロア方程式は、二つに分けられるだろう

V、V'、V''、・・・・、V''*の内から、>>29の置換との対応で、偶置換に属するものだけを取り出し(それらは60個)、並べ替えて
V、V'、V''、・・・・、V''**として
F'(x)=(x-V)(x-V')(x-V'')・・・・(x-V''**)を作ることができる

残りの積は、奇置換に属するものの積
こう考えることにより
ガロア方程式F(x)に補助方程式の根を添加することで、ガロア方程式F(x)を分解し、次数を下げることができる
これによって、ガロア方程式F(x)を体論の代わりに使って、ガロア理論を展開することができるのだ

13:132人目の素数さん
12/05/26 18:15:21.52
(再録)
残念ながら、複雑な数学記号が掲示板では使えない

例えば、置換のコーシーの記法は、2行にわたる括弧が必要だが、ここでは使えない
そこらの読みにくさはご容赦願いたい

その制約の中で出来るだけ分かりやすくを心がける

そうそう、よろしくね。怪しいところがあれば、指摘して
高校生の諸君は、図書館に
アーベル ガロア 群と代数方程式 (現代数学の系譜 11) >>4は、あるかい
ブルーバックス 「ガロアの理論」 中村亨>>2も是非併読を
それから、倉田令二朗ガロアを読む>>6があれば完璧かな

>>12 補足

差積と判別式は、下記に詳しい
ここでは、判別式は重根の有無を見分けるためと書かれている
しかし、差積(=判別式の平方根)は、偶置換(=交代群の置換)で値が変わらないということも重要なのだ
URLリンク(ja.wikipedia.org)(%E5%A4%9A%E9%A0%85%E5%BC%8F)

(訂正)
V、V'、V''、・・・・、V''*の内から、>>29の置換との対応で、偶置換に属するものだけを取り出し(それらは60個)、並べ替えて
 ↓
V、V'、V''、・・・・、V''*の内から、>>16の置換との対応で
(注:前スレからの再録で、リンクの番号がずれているものがあります。気付けば直しますが、気付かず旧のママのものがあればご容赦ください。)

14:132人目の素数さん
12/05/26 18:16:11.53
(再録)
>>13
補足

ガロア方程式という言葉は、倉田>>4のP110では
「その任意の根が他の根の有理式(k上の)で表されるような方程式のことを、今日ガロア方程式と呼んでいる」とある
しかし、ここでは狭義にガロア分解式を根とするF(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)をガロア方程式と呼びたい
それが、ガロアの頭の中にあったものだったろうから(ガロア論文で扱われているのはこれだ)

そして、判別式の平方根を添加することで
ガロア方程式F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)

F(x)=F’(x)F’’(x)
と二つに分けられ
F'(x)=(x-V)(x-V')(x-V'')・・・・(x-V''**):偶置換に属するものだけを取り出した
F’’(x):奇置換に属するものだけを取り出した
となる

そして、これを素数Pのべき根に一般化すれば

ガロア方程式F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)

F(x)=F’(x)F’’(x)・・・・F’p(x)
とp個に分けられ
F'(x)=(x-V)(x-V')(x-V'')・・・・(x-V''**):ある部分群に属するものだけを取り出した
F’’(x)・・・・F’p(x):ある部分群の共役に属するものだけを取り出した
となる

これが、ガロアが現代の集合論的体論の代わりに頭に描いていたものだろう

15:132人目の素数さん
12/05/26 18:17:44.97
(再録)
最近気付いたが、下記Jean-Pierre Tignolも詳しい
というか、P156の定理10,7など、ガロア論文>>4のP39のラグランジュ分解式のn乗を扱っていることや補助方程式の次数が(n-2)!になることと、完全に一致している
一致という意味では小杉の方がお話風で読みやすいが
ともかく、こういうラグランジュが到達していた地点を見ると、ほとんどガロアに近い

というか、ガロアは完全にラグランジュを下敷きにしていると思う
その痕跡をかなり消しているが
ただし、方程式のガロア群とその分解を明確に意識して理論を展開したという点では、やはり天才ではあるのだが

URLリンク(www.kyoritsu-pub.co.jp)
代数方程式のガロアの理論(ISBN4-320-01770-6)Jean-Pierre Tignol著 新妻 弘訳 A5,360頁,3200円
第10章 ラグランジュ
10.1 方程式の理論の成熟
10.2 既知の方法に対するラグランジュの考察
10.3 群論とガロア理論の最初の成果
(引用おわり)

Jean-Pierre Tignol「代数方程式のガロアの理論」P307に
”付録:ガロアによる置換群の表現”としてガロア記法>>27の解説がなされている
これはなかなか興味深いね

P311には、
「順列群というガロアの記述において、疑いのない明確な点は部分群、特に正規部分群の概念がこれから見ていくようにかなり自然なやり方で発生することである。」と書かれている

 つまり、正規部分群こそがガロアの理論の核心であり、オリジナルな点だが、それはガロア記法があったればこそと言えよう

なお、ブルーバックス「ガロアの理論」中村亨>>2は高校生向けのガロア記法の解説であり、
Jean-Pierre Tignolは、大学の講義用の専門的な解説になっているので、両方読まれることをお勧めする

16:132人目の素数さん
12/05/26 18:18:48.68
数学に直感を取り戻そう!
難しいことをやさしく
複雑なことを本質を抽出して単純化する

複雑なことを図式化し見える化する
細部に立ち入る前に全体像を把握する(ジグソーパズルと全体像)
途中で分からなくても最後まで通してみる

視点と切り口
思考の補助線
複数の本を見る

こんなところが、このスレの重要キーワードだ

17:132人目の素数さん
12/05/26 18:21:26.89
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

18:132人目の素数さん
12/05/26 18:22:57.50
>>16
補足

思考の補助線って本があるんだね
ある数学的対象があって、数学の理論がある
「補助線は何だ」という視点で学んでゆくことは大事だと思う
URLリンク(rinribenkyouho) (URLが通らないので下記検索願いたし)
思考の補助線: 文系国公立大学受験・勉強法ブログ(^o^)/ 2009年08月08日

19:132人目の素数さん
12/05/26 18:23:32.65
>>18
補足

(再録)
ある事象Aについて、見る視点によって、見え方が違うという場合がある
というか、多少複雑な事象については、視点を変えてみる必要がある場合が多い

例えば、Aが四角形の形に配列された煙突だとすると、視点によっては3本に見えたりする
上空から見れば、配列は一目瞭然としても、上空に上がれない場合にはその配列を周囲から調べるしか配列を知る方法はない

20:132人目の素数さん
12/05/26 18:24:20.26
(再録)
>>16
補足
>視点と切り口

モース理論というのがある
複雑な対象を切り口で考えるのだと思う(下記)

URLリンク(www.sci.osaka-cu.ac.jp)
『ADHM 構成』歴史おぼえがき 2002 年8月
(抜粋)
素粒子論は湯川秀樹の中間子論に始まる.彼の理論には二つの特徴があった.一つは新粒子を導入したこと,もう一つは場の理論の枠内にとどまったことである(『場の理論』は平坦な抑揚で読むこと).
一方,西洋を中世から近代へと移行せしめた『オッカムの剃刀』という格率のせいなのか,ヨーロッパの物理学者たちは新粒子の導入に慎重であり,
また,若き日に量子力学の開拓者たちであった彼らは,subatomic な領域に足をふみいれるにあたり,自分たちがつくりあげた量子力学を惜しげもなく捨てるというより過激な方向にむしろ魅力を感じていた.
東洋人であって西洋近代の格率のもとにいなかったことと,時期的・地理的要因により量子力学に後から追随する位置にいたことが,湯川を独創的にした,という見方もある.(小平邦彦の複素多様体論についても同様のことが言えるかもしれない.)

3.現代数学という衝撃
話をもどそう.つづいて物理学者たちの競争は多重インスタントンへと向かう.アノマリーの Jackiw や当時まだ無名の Witten も参戦してきた.そんな中, 4 人の数学者が 4 次元ユークリッド空間上の多重インスタントンを完全に分類した論文を Physics Letters に提出した.
それが ADHM である.物理学者にとって重要かつホットな問題に対し,そのさなかに数学者のみによるインパクトある仕事が提出される,というのは過去に例のないことではなかったか.
しかもその手法が,それまで物理学者たちには全くなじみのなかった代数幾何という分野の,それも層係数コホモロジーの言語で書かれた現代的なものであった.
Polyakov は「現代数学が役に立つのをはじめて見た」と周囲に漏らしたと伝えられる.この衝撃が若き日の Witten の眼を現代数学へと向けるきっかけとなったのではないかと推察される.

21:132人目の素数さん
12/05/26 18:25:00.08
(再録)
これも面白い

URLリンク(www.sci.nagoya-u.ac.jp)
眠りから覚めた微分ガロア理論 梅村 浩 多元数理科学専攻教授 名古屋大学理学部・理学研究科 広報誌 No.10 p14_15

彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。
(2)ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。
 方程式の場合、目のつけどころであるカナメの部分がガロア群である。ヒヨコのお尻と違って、方程式の対称性であるガロア群は隠れているので、発見するのが難しいのである。
 ガロア理論は上に述べた歴史的難問の解決に役立っただけではない。19世紀以降の数論、代数幾何学の発展はガロア理論なくして考えられない。たとえば300年を越える眠りから覚めたフェルマの最終定理の証明もそうである。

忘れ去られたアイデア

代数方程式とならんで大切なのが微分方程式*4である。科学の多くの問題が微分方程式記述できることからもその重要性が推察できよう。
代数方程式においてガロア理論が重要な役割をはたすのを見て、リー*5はガロア理論を微分方程式に対してもつくろうという着想をもった。微分方程式のガロア理論は微分ガロア理論とよばれている。つまり、リーは微分ガロア理論をつくろうと考えた。
ところがこれは難しい問題である。その理由は2つあって、1つは理論が本質的に無限次元*6であること(略)
有限次元の理論さえなかった当時、リーは有限次元の理論からつくり始めなければならなかった。リーのアイデアの実現は20世紀の初めまで盛んに試みられたが、問題が難しいこともあって放棄され、ついには忘れ去られてしまった。
私は1996年に、20世紀初頭に活躍したフランスの数学者ヴェッシオ*7の晩年の1つのアイデアを現代代数幾何学*8と結びつけることにより、新しい無限次元微分ガロア理論を提案した。
数年後海外で話題となった。現在はこの分野の研究に注目する数学者が増えてきた。無限次元微分ガロア理論は数十年の眠りから覚めて復活したのである。
1980年代からひそかにこの分野の重要性に注目して、研究をしていた私にとって、復活のための一翼を担うことができたのは、うれしいことである。

22:現代数学の系譜11 ガロア理論を読む
12/05/26 18:26:18.29
コテ抜けていた
旧スレからの転載はこの程度で以降新しい話題を

23:現代数学の系譜11 ガロア理論を読む
12/05/26 18:37:46.60
これちょっと面白い

URLリンク(dspace.wul.waseda.ac.jp)
Title: ガロア逆問題に対する構成的研究 早稲田理工博士論文
Authors: 陸名 雄一
Issue Date: 2月-2003

Gaiyo-3463.pdf 179.96 kB URLリンク(dspace.wul.waseda.ac.jp)
Shinsa-3463.pdf 208.23 kB URLリンク(dspace.wul.waseda.ac.jp)
Honbun-thesis.pdf 651.7 kB URLリンク(dspace.wul.waseda.ac.jp)

24:132人目の素数さん
12/05/26 21:03:45.51
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

25:現代数学の系譜11 ガロア理論を読む
12/05/27 06:56:07.65
前スレ421より
URLリンク(www-users.york.ac.uk)
Symmetries of Equations: An Introduction to Galois Theory
Brent Everitt, version 1.12, December 19, 2007.

これで、12. Groups II: Symmetries of Fields ....69
(12.4) Symmetries of things normally arrange themselves into a group, and field symmetries are no
exception. We could talk just of the symmetry group of a field, but it turns out to be more instructive to
make a slightly more elaborate definition that takes into consideration not just fields, but their extensions:

とあります。
Symmetryと群
この理解が大事だな

26:現代数学の系譜11 ガロア理論を読む
12/05/27 07:05:28.82
>>25
つづき
P6(1.9)に面白い図がある

If this was always the case, things would be very simple: Galois theory would just be the study
of the “shapes” formed by the roots of polynomials, and the symmetries of those shapes. It would be a
branch of planar geometry.
But things are not so simple. If we look at the solutions to x^5 ? 2 = 0, something quite different
happens:

We will see later on how to obtain these expressions for the roots. A pentagon has 10 geometric symmetries,
and you can check that all arise as symmetries of the roots of x^5 ? 2 using the same reasoning as in
the previous example. But this reasoning also gives a symmetry that moves the vertices of the pentagon
according to:

This is not a geometrical symmetry! Later we will see that for p > 2 a prime number, the solutions to
x^p ? 2 = 0 have p(p ? 1) symmetries. While agreeing with the six obtained for x^3 ? 2 = 0, it gives
twenty for x5 ? 2 = 0. In fact, it was a bit of a fluke that all the number theoretic symmetries were also
geometric ones for x^3 ?2 = 0. A p-gon has 2p geometrical symmetries and 2p ? p(p?1) with equality
only when p = 3.
(つづく)

27:132人目の素数さん
12/05/27 07:06:12.25
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

28:現代数学の系譜11 ガロア理論を読む
12/05/27 07:11:27.81
>>26
つづき

>We will see later on how to obtain these expressions for the roots.

これが、12. Groups II: Symmetries of Fields ....69>>25なんだ
で、P76(12.18)に同じ図が出てくる
Returning to some of the other examples from the first lecture, the extension Q ⊂ Q(, !)
satisfies the criterion of the Theorem above, where = √5 2 and ! is a primitive 5-th root of 1. Thus
an automorphism is free to send to any root of the polynomial x5 ? 2 and ! to any root of the 5-th
cyclotomic polynomial 1+x+x^2+x^3+x^4. Thus there are twenty elements of the Galois group in total.

29:132人目の素数さん
12/05/27 07:11:46.81
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

30:現代数学の系譜11 ガロア理論を読む
12/05/27 07:58:13.11
>>28
つづき

2項方程式x^5-2=0の根を添加した拡大体で
α=2^(1/5) (2の5乗根)、ω=cos(2π/5)+isin(2π/5)(1の5乗根)
x^5-2=0の根は、α、αω、αω^2、αω^3、αω^4 の5つ

この自己同型は大きく2種類に分かれる
1.ωを、ω、ω^2、ω^3、ω^4に置き換える位数4の巡回群(αは固定)
2.αを、α、αω、αω^2、αω^3、αω^4 に置き換える位数5の巡回群(ωは固定)

P76(12.18)の図は、上記1.でω→ω^3の置き換えをした図
ω→ω^3
ω^3→ω^9=ω^4
ω^4→ω^12=ω^2
ω^2→ω^6=ω^1
の巡回となると

同様にα→αω^3の置き換えをした図を考えると
α→αω^3
αω^3→αω^6=αω^1
αω^1→αω^4
αω^4→αω^7=αω^2
αω^2→αω^5=α
の巡回となると

31:132人目の素数さん
12/05/27 07:59:55.67
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

32:現代数学の系譜11 ガロア理論を読む
12/05/27 08:19:10.36
>>30
つづき

> 2.αを、α、αω、αω^2、αω^3、αω^4 に置き換える位数5の巡回群(ωは固定)

これが、いわゆるKummer拡大の場合で、1の5乗根が添加された体からの拡大が巡回群になると
ここらは、足立 ガロア理論講義 URLリンク(www.nippyo.co.jp) (前スレ327)で
P142定理6.2の証明で同じことをしているので、参考になるだろう

アルティンのガロア本 URLリンク(na-inet.jp) E.Artin(アルティン)/寺田文行・訳「ガロア理論入門」ちくま学芸文庫)(前スレ435)では
13.クンマー体で、ぐだぐだ書いている

33:現代数学の系譜11 ガロア理論を読む
12/05/27 08:23:30.80
>>31
乙です。そうそう、”age”で頼むよ。>>27のようなsageは良くない
しかし、朝からせいが出ますな。まあ、やることないんか。とすると、おいらが仕事を作ってやっているんだ。がんばれよ、ぼく

34:132人目の素数さん
12/05/27 08:25:55.95
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

35:現代数学の系譜11 ガロア理論を読む
12/05/27 08:36:32.57
>>32
>アルティンのガロア本 URLリンク(na-inet.jp) E.Artin(アルティン)/寺田文行・訳「ガロア理論入門」ちくま学芸文庫)(前スレ435)では
> 13.クンマー体で、ぐだぐだ書いている

余談だが、足立 ガロア理論講義が、あとがきで
「アルチンの著書は癖が強くて私には読みにくい本だと思われた」とある

同感だ。ある程度、ガロア理論が分かった人が読む本だろう。数学書では実は薄い本は案外読むのがむつかしい。記述が圧縮されすぎていて、飛躍が多い
アルチンの講義を受けるテキストとしては良いのかも。質疑応答付きでなら

名著といわれ薄いからと取り付いて最初から読んでいって挫折した人も多いだろうと思う
独習向きではないように思う。別の本である程度学習してから読めば良いのではないか

36:現代数学の系譜11 ガロア理論を読む
12/05/27 08:48:42.62
>>34
がんばれよ、ぼく

>>26
"If this was always the case, things would be very simple: Galois theory would just be the study
of the “shapes” formed by the roots of polynomials, and the symmetries of those shapes. It would be a
branch of planar geometry.
But things are not so simple. If we look at the solutions to x^5- 2 = 0, something quite different
happens:"

前スレ>>359より引用
URLリンク(hooktail.sub.jp)
ガロア群と可解群[物理のかぎしっぽ]

円分体で復習
(内容の引用はしないので、ここを開けて見ること)

x^n=aという2項方程式による最小分解体Eが、基礎体Fに対しE=(ζ、β) (ζ:1のn乗根、β:aのn乗根(実数))となり
ここに”注”があって
”直観的イメージとして,半径βの円上に解がグルリと並んでいる様子を想像して下さい.最初の解をβとすると,次の解は ζβ で表わされます.
ζの偏角は 2π/n 度です. ζβから始めて順次ζを掛けていくことで,全ての解を表わせるようになっています.”
と、図と共に示されている。

言わずと知れた、2項方程式x^n=aの解は、半径βの円の等分点になっているという事実を説明しているのだ
そして、EとF に対して中間体B=F(ζ) (ζ:1のn乗根を基礎体Fに添加した中間体)を考えると、ガロア群G(E/B)が巡回群になることが示されている
(引用おわり)
ここを上記と合わせて読んで下さい。アルティンのガロア本>>32と同じことを書いていると思うのだが、こちらの方が分かりやすい

37:現代数学の系譜11 ガロア理論を読む
12/05/27 09:23:15.75
前前スレ68
URLリンク(homepage2.nifty.com)
方程式論の歴史(平成14年)
このP19がちょっと普通の教科書と違う
「一般にx^n=1の形の方程式を円分方程式という.
・・・
これらの複素数は,右図のガウス平面上で原点を中心
とする単位円上の点と対応し,位数nの巡回群をなす.」

x^n=1ではなく、(x^n-1)/(x-1)=0とした既約な式を円分方程式とするのが普通(但しnは素数。素数でない場合はもう少し複雑)

よって
位数nの巡回群をなす.

位数n-1の巡回群をなす.

前スレ300 URLリンク(hooktail.sub.jp) 1のn乗根 [物理のかぎしっぽ]
円周等分方程式と拡大体の基底に関する注意をご参照

38:現代数学の系譜11 ガロア理論を読む
12/05/27 10:38:45.95
「第53回藤原賞」を深谷賢治・京都大学教授(53)か

URLリンク(www.yomiuri.co.jp)
第53回藤原賞に京大・深谷氏と中部大・山本氏(2012年5月25日19時05分 読売新聞)

 藤原科学財団(理事長=鈴木正一郎・王子製紙取締役顧問)は25日、科学技術の発展に貢献した研究者をたたえる「第53回藤原賞」を深谷賢治・京都大学教授(53)と、山本尚・中部大学教授(68)に贈ると発表した。

 副賞は各1000万円。
贈呈式は6月15日、東京都千代田区の学士会館で行われる。深谷氏は、幾何学の分野で、高次元空間の性質を探る手法を確立。
山本氏は、分子性酸触媒という新たな触媒を開発し、有機合成化学の発展に貢献した。(2氏の業績は27日付朝刊で紹介する予定)

39:現代数学の系譜11 ガロア理論を読む
12/05/27 10:43:37.53
>>36
>(2氏の業績は27日付朝刊で紹介する予定)

載ってますね
深谷県? どこの県?

URLリンク(ja.wikipedia.org)
深谷 賢治(ふかや けんじ、1959年3月12日 - )は数学者。京都大学教授。神奈川県生まれ。東京大学卒(1981年)。同大学院修士課程修了(1983年)。博士号取得(1986年)。日本学士院会員。
専門は幾何学で、リーマン多様体の崩壊、アーノルド予想の解決、ミラー対称性予想への貢献、深谷圏(A∞圏)の定義等の業績がある。
専門は、最初のころは大域リーマン幾何学(空間の「曲がり方」を調べる分野)、その後、ゲージ理論(数学的側面は近年位相幾何学にも応用されている)も研究し、現在の専門はシンプレクティック幾何学(解析力学の数学的基礎でその大域的な側面を研究)。

受賞歴
1987年 - 井上科学振興財団井上研究奨励賞:一定数より直径と曲率が小さいリーマン多様体の集合の境界
1989年 - 日本数学会幾何学分科会幾何学賞:リーマン多様体の崩壊理論とその応用に関する一連の独創的な業績
1994年 - 日本数学会春季賞:Floer ホモロジー理論の研究
2002年 - 井上科学振興財団井上学術賞:量子化の手法による幾何学の研究
2003年 - 日本学士院日本学士院賞:微分・位相幾何学の研究
2009年度 - 朝日新聞文化財団朝日賞

40:現代数学の系譜11 ガロア理論を読む
12/05/27 10:49:15.82
あのなー、深谷先生バックの緑が濃すぎで見づらいよ。バックをもっと明るい色にするか字を明るくするか

URLリンク(www.math.kyoto-u.ac.jp)
これは最大限手抜きして作った深谷賢治のホームページです。

とりあえず、未出版のもの中心に数編の論文をダウンロード可能にするのだけが目的です。
そのうちもう少しまじめに作る予定です。  
コメントをつけます。(数学のプロ向けです。)

41:現代数学の系譜11 ガロア理論を読む
12/05/27 11:00:45.26
つづき
URLリンク(www.kyoto-u.ac.jp)
深谷賢治 理学研究科教授が日本学士院会員に選ばれました。 20091214京都大学
深谷賢治 理学研究科教授
深谷賢治教授は、昭和56年東京大学理学部を卒業し、同58年同大学院理学系研究科修士課程を修了後、同理学部助手に採用、同教養学部、理学部助教授を経て、平成6年京都大学理学部教授に就任し、現在に至っています。

同教授の初期の研究は、「長さ」や「面積・体積」などが定まる空間、リーマン多様体に関わるものであり、リーマン多様体が退化する現象すなわち崩壊現象を研究されました。
山口孝男教授(現筑波大学)との共同研究である「基本群と曲率」への応用は、大域リーマン幾何学の基本定理の一つです。測度付き距離空間の収束概念は、崩壊現象とラプラス方程式の関係の研究から生まれました。
同教授は、次にゲージ理論の数学的研究を行い、平成5年に2・3・4次元にまたがる位相的場の理論を、ある(A無限大)圏からの函手として定式化することを提唱され、この圏は、後に深谷圏と呼ばれるようになります。
平成6年にロシア人数学者コンセビッチは、深谷圏の定義を使い、ホモロジー的ミラー対称性予想を提唱し、ミラー対称性はシンプレクティック多様体の深谷圏と複素多様体の連接層の導来圏の対応であると予想しました。この予想は、その後の研究の指導原理となっています。
平成8年には、従来複素解析関数あるいは多項式の範疇で考えられていた「特異点をもつ空間」の概念を、微分可能関数に広げる「倉西構造」とその多価摂動の概念を小野 薫教授(現北海道大学)と創始し、ハミルトン力学系の周期軌道についてのアーノルド予想に応用しました。
深谷圏の最も一般的で数学的に厳密な定義は困難で、その後10年を超える研究を要しましたが、
倉西構造、A無限大構造のホモロジー代数などに基づく、フレアーホモロジーや深谷圏の最も一般的な形での定義は、平成21年にY.-G. Oh教授(現Wisconsin大学Madison校)、太田啓史教授(現名古屋大学)、小野 薫教授との共同研究で完成しました。

これら一連の研究に対して、同教授にはこれまでに朝日賞、日本学士院賞、井上学術賞、日本数学会春季賞などが授与されました。今回の日本学士院会員への選出は、これまでの同教授の一連の業績が評価されたものであり、大変喜ばしいことです。

42:現代数学の系譜11 ガロア理論を読む
12/05/27 11:06:50.90
つづき
URLリンク(www.japan-acad.go.jp)
日本学士院新会員の選定について | 日本学士院 平成21年12月14日の総会
深谷賢治氏は、数学の一分野であるシンプレクティック幾何学における顕著な業績で知られています。深谷氏は、有限の大きさをもつ周期ハミルトン系には必ず周期解が存在するという予想(アーノルド予想)を、小野薫氏との共同研究で証明しました。
さらに同氏らはこのアイディアを革新的に深め、深谷圏の理論に発展させました。
深谷圏は、点という概念やその上の関数の積の交換法則をすてて新しい空間像を作ろうとする数学的枠組みとして大きな研究の流れを作りつつ、既存の数学の問題を解くのにも役立っています。
また深谷圏は、超弦理論で発見されたミラー対称性の数学的研究でも重要な役割を果たしており、さらに複素幾何学において層の圏が果たした役割をシンプレクティック幾何学で担うと期待されています。
同氏は幾何学の普及にも尽力し、同氏の描く幾何学の雄大な構想は、学術論文ばかりでなく多くの専門書、啓蒙書を通して、若い世代にも大きな影響を与えています。
【用語解説】
○シンプレクティック幾何学 古典物理学の解析力学から始まった幾何学。天体で周期的な現象がおこるのは,エネルギーが保存されるからであるが、エネルギーが保存される系をハミルトン系といい、シンプレクティック幾何学の研究対象となる。
20世紀後半からの大域シンプレクティック幾何学の発展はめざましく、現在もっとも活発に研究されている幾何学の分野の一つである。
○周期解 微分方程式の解で、周期的に同じ形が繰り返される解のこと。
○圏 数学の対象となるものの中で、一定の性質を共有するものを集め、それら全体をまとめて研究するために考えられた概念である。カテゴリーともいう。
○交換法則 3×2=2×3のような法則。関数の積に対してもなりたつ。 ○ミラー対称性 元来理論物理学(超弦理論)で発見された。数学的にはシンプレクティック幾何学と複素幾何学のある種の双対性と理解されている。
○複素幾何学 複素数を変数とする関数を研究するために考えられた幾何学。
○層 岡潔(1901年-1978年)やジャン・ルレー(1906年-1998年。フランスの数学者)などの研究から生まれた概念で、複素関数論や代数・複素幾何学の基本概念である。

43:現代数学の系譜11 ガロア理論を読む
12/05/27 12:04:26.74
>>25
URLリンク(www-users.york.ac.uk)
Symmetries of Equations: An Introduction to Galois Theory

P92の図が下記の図と同じ(どちらが先か不明だが、下記の図は小さいので上記の図を見ることをおすすめする)
URLリンク(mathworld.wolfram.com)
Quintic Equation -- from Wolfram MathWorld

44:132人目の素数さん
12/05/27 13:13:49.25
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/

45:現代数学の系譜11 ガロア理論を読む
12/05/27 15:15:34.33
>>39
深谷県のご参考
URLリンク(www.math.sci.osaka-u.ac.jp)
植田一石大阪大学大学院理学研究科
Conference Proceedings / Reports

3. Coamoeba and equivariant mirror symmetry (joint work with Masahito Yamazaki, in Japanese),
MSJ meeting, September 2007,
pdf file. URLリンク(www.math.sci.osaka-u.ac.jp)
コアメーバとトーラス同変なホモロジー的ミラー対称性

1.弦理論私見
弦理論はもともと双対共鳴模型と呼ばれ、ハドロン(すなわち陽子や中性子、
中間子などの強い相互作用をする素粒子)を記述するための現象論として誕生
したが、Yang Mills理論が強い相互作用の正しい理論としての地位を確立すると
ともに、Kelvin 卿の渦原子模型のように科学史の脚注として忘れ去られる運命に
あるかと思われた.
しかし、弦理論は滅びなかった.失敗した現象論として始まったこの理論は、
自然科学(すなわち、実験によって検証できる科学)としてはいまだかつて一度
も成功したことがないにもかかわらず、その美しい数理的構造によって多くの理
論家を引き付けてきた.弦理論の(場の量子論と比較した)特徴は整合性を壊さ
ずに理論を弄ることの難しさにあり、また、理論の致命的な矛盾が見つかっては
奇想天外な解決策によって不死鳥のように蘇るという紆余曲折に富んだ歴史を持
つ.例えば、ボゾン的弦理論の共形アノマリーと呼ばれる深刻な困難は時空の次
元を26次元 にすることで回避できる.この26という数字はLeech 格子の次元
24 に2を足したものであり、この事実はBorcherdsによるmoonshine 予想の解決
にとって本質的である.
弦理論における最大の謎は果たしてこの理論が本当に存在するか(つまり、内
部に矛盾を持たないか)である.無矛盾性のために必要な条件は非常に強いので、
それらが全て満たされるためには「奇跡」が沢山起こる必要がある.しかし、知
られている限りで必要な奇跡は全て実際に起こり、弦理論の存在に対する強力な
証拠の一つになっている.(以下略)

46:現代数学の系譜11 ガロア理論を読む
12/05/27 15:18:35.79
>>45
追加

URLリンク(www.math.sci.osaka-u.ac.jp)
植田一石大阪大学大学院理学研究科
Conference Proceedings / Reports

Mirror Symmetry and McKay Correspondence (in Japanese),
Geometry Symposium, August 2005,
pdf file. URLリンク(www.math.sci.osaka-u.ac.jp)
ミラー対称性とMcKay 対応

三角圏を使った定式化が本質的であるもう1つの例として,Kontsevich
[8] が1994 年の国際数学者会議で提出した次の予想がある:
予想(ホモロジー的ミラー予想). 任意の3 次元Calabi-Yau 多様体M に対し,あ
る3 次元Calabi-Yau 多様体W が存在して,M の連接層の導来圏とW の深谷圏
の導来圏が三角圏として同値になる:

47:132人目の素数さん
12/05/27 15:57:11.44
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/

48:132人目の素数さん
12/05/27 16:00:14.26
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/

49:現代数学の系譜11 ガロア理論を読む
12/05/28 21:24:30.24
深谷拳って、強そう

URLリンク(pantodon.shinshu-u.ac.jp)
Fukaya category
Symplectic 多 様 体 M から Lagrangian submanifold を object とする A ∞ -category が 作 られる 。 それが M の Fukaya category と 呼 ばれるもの [ Fuk93 , Fuk97 ] であ る 。

正 確 な 定 義 のためには 様 々 な 道 具 が 必 要 になり 、 理 解 するためにはその 背 景 も 知 る 必 要 があるため 、 どこから 手 をつけていいか 難 しい 。
幸 い Paul Seidel が “Fukaya categories and Picard-Lefschetz theory” という 題 名 の 本 を 書 いているので 、 A ∞ -category の 基 礎 か ら 書 いた Fukaya category に 関 する 解 説 として 期 待 できる 。
まだ 出 版 されていないが 、 Seidel の ホ ー ムペ ー ジ から proofreading 前 の 原稿 の PDF ファイル が 入 手 でき る 。

Riemann 面 の Fukaya category の Grothendieck group を 計 算 しているのは 、 Abouzaid [ Abo ] である 。

References

[Abo] Mohammed Abouzaid. On the Fukaya Categories of Higher Genus Surfaces, arXiv:math.SG/0606598 .

[Fuk93] Kenji Fukaya. Morse homotopy, A ∞ -category, and Floer homologies. In Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993) , volume 18 of Lecture Notes Ser. , pages 1?102, Seoul, 1993. Seoul Nat. Univ.

[Fuk97] Kenji Fukaya. Morse homotopy and its quantization. In Geometric topology (Athens, GA, 1993) , volume 2 of AMS/IP Stud. Adv. Math. , pages 409?440. Amer. Math. Soc., Providence, RI, 1997.

Updated on: Wed Sep 01 11:56:04 +0900 2010

50:現代数学の系譜11 ガロア理論を読む
12/05/28 21:33:57.61
>>49
補足

URLリンク(pantodon.shinshu-u.ac.jp)
Mirror Symmetry

Kontsevich は , ICM 94 で Fukaya の アイデア [ Fuk97 ] に 基 づいて , mirror symmetry を 多 様 体 上 の derived category の 間 の duality と 解 釈 するという アイデア を 発 表 した , らしい 。
Homological mirror symmetry conjecture と 呼 ばれている 。 解 説 としては , Ballard の [ Bal ] がある 。

Fukaya category
Calabi-Yau 多 様 体 に 対 する Homological Mirror Symmetry Conjecture
Kontsevich の アイデア に 忠 実 に 従 っ ているのが Polishchuk という 人 で , elliptic curve の 場 合 に Kontsevich の 予 想 を 証 明 したようである 。

その アイデア を superstring theory で 押 しすすめ , D-brane の 理論 が “categorical” にな っ てきている 。 例 えば , Lazaroiu の preprint [ Laz03 ] にある 解 説 を 読 むと よい 。

Kontsevich や 深 谷 の アイデア を 理 解 するためには , まず 以下 のことが 必 要 で ある 。

Complex projective variety 上 の coherent sheaf の derived category
具 体 的 な 空 間 の Fukaya category が 分 かれば , 理 解 の 助 けになることは 当 然 である が , あまり 詳 しいことは 分 っ ていないようである 。
Abouzaid が [ Abob ] で Riemann 面 の Fukaya category の K -theory を 調 べている 。

Abouzaid の [ Aboa ] の Introduction は Kontsevich の Homological Mirror Symmetry Conjecture の 現 況 を 知 るのによい 。
それによると , Kontsevich は Fano 多 様 体 への 予 想 の 拡 張 も 立 てているらしい 。 その Abouzaid の 論 文 は , toric variety の 場 合 に tropical (algebraic) geometry を 用 いて 調 べているという 点 で 興 味 深 い 。

51:現代数学の系譜11 ガロア理論を読む
12/05/28 21:37:36.51
>>50
補足

URLリンク(pantodon.shinshu-u.ac.jp)
A∞-category
A ∞ -category は Fukaya により 導入 された [ Fuk93 , Fuk97 ] 概 念 である 。 k -linear category あるいは dg category の A ∞ 版 あるいは A ∞ -algebra の many objecti?cation である 。

解 説 としては , Paul Seidel の 本 [ Sei08 ] がよいだろう 。
Keller の 学 生 だ っ た Lefevre-Hasegawa の thesis [ LH ] もあるが , フランス 語 である 。
Bespalov と Lyubashenko と Manzyuk が 最 近 “Pretriangulated A ∞ -categories” という 600 ペ ー ジ もある 本 を ウクライナ で 出 したようである 。
Lyubashenko の ホ ー ムペ ー ジ から download できる 。

A ∞ -category
Fukaya category
Kontsevich と Soibelman は [ KS01 ] で A ∞ -pre-category という 概 念 を 定 義 した 。
特 定 の 組 に 対 してのみ “morphism の 成 す module” が 定 義 されるもので , Fukaya category の 定 義 される 状 況 をより 正 確 に 表 わしたものである 。
Effimov の [ E? ] によると , そのよ うな 部分 的 に morphism が 定 義 されたものは , A ∞ -category と 取 り 替 えることができる ようである 。

A ∞ -pre-category
ホモロジ ー 代 数 的 には , A ∞ -category は DG category の 一 般 化 と 考 えることがで きる 。 つまり DG category から canonical な 方法 で A ∞ -category が 定 義 で きる

52:132人目の素数さん
12/05/28 21:55:27.61
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

53:現代数学の系譜11 ガロア理論を読む
12/05/28 21:59:13.83
>>49
深谷拳の写真がある
【Budget Allocation】 81,600 Thousand Yen は、なかなか凄いね

URLリンク(www.jsps.go.jp)
【Grant-in-Aid for Scientific Research(S)】
Science and Engineering (Mathematical and physical sciences)
Title of Project:Proof of Homological Mirror symmetry
Kenji Fukaya
( Kyoto University, Graduate School of Science, Professor )

【Term of Project】 FY2011-2015
【Budget Allocation】 81,600 Thousand Yen
【Homepage Address and Other Contact
Information】
URLリンク(www.math.kyoto-u.ac.jp)

54:132人目の素数さん
12/05/28 22:15:02.74
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

55:現代数学の系譜11 ガロア理論を読む
12/05/28 22:15:21.94
MathOverflowって、英語版数学板をもっと高度にした感じかな


Welcome to MathOverflow
A place for mathematicians to ask and answer questions.

URLリンク(mathoverflow.net)
Noncommutative Fukaya category?
(抜粋)
The definition of the Fukaya category on a symplectic manifold uses techniques that only seem to be available in the geometric context,
so is there a plausible definition of the `Fukaya category' of a noncommutative space in order to make the noncommutative homological mirror symmetry conjecture hold?

1 Answer
Since no one else has tried to answer, I'll take a shot.
It seems to me that there are threads of ideas in this story that in the very distant future might be woven together to give a possible answer.

To begin, we should note that there seems to be a general idea, discussed in this mathoverflow question,
URLリンク(mathoverflow.net)

56:132人目の素数さん
12/05/28 22:23:41.95
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

57:132人目の素数さん
12/05/29 04:25:35.01
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/

58:現代数学の系譜11 ガロア理論を読む
12/05/29 22:17:52.25
>>21
梅村”代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される”が分からんだと? 勉強不足だろう

URLリンク(www.sci.kobe-u.ac.jp)
見える対称性と隠れた対称性
神戸大学理学部数学科
齋藤政彦
神戸大学理学部サイエンスセミナー
2006 年7月29 日・神戸大学神大会館

対称性とは何か?
? 対称 = Symmetry =Sym ・metry
ギリシャ語 で「同じ尺度 」の意 ,転じて調和 ;
均整 (美), 調和 (美).

ガロア理論
??ガロアは各方程式に対するガロア群を定義し, そのガロア群の言葉で方程式の解の様子が制御される理論を構成した..
??これを用いて, ガロアは、一般の5次方程式に対する解の公式が存在しないことを示した.
??これは, 現代代数学の始まりとも言われる画期的な理論である.

59:132人目の素数さん
12/05/29 23:23:14.07
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch