現代数学の系譜11 ガロア理論を読む3at MATH
現代数学の系譜11 ガロア理論を読む3 - 暇つぶし2ch312:現代数学の系譜11 ガロア理論を読む
12/04/22 18:34:41.62
>>311
補足の補足

下記説明で、対称性という言葉がキーワードになっていることが分かるだろう
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。
概略

群の概念は、数学的対象 X から X への自己同型の集まりの満たす性質を代数的に抽象化することによって得られる。
この集まりは X の対称性を表現していると考えられ、結合法則・恒等変換の存在・逆変換の存在などがなりたっている。

集合論にもとづき X が集合として実現されている場合には、自己同型として X からそれ自身への全単射写像を考えることになるが、空間や対象の持つ構造に応じてさらに付加条件を課すことが多い。
例えば、ベクトル空間 X に対してその自己同型写像の集まりを考えると群が得られる。
また、平面上に正三角形など何らかの対称性を持った図形が与えられているとき、平面全体の変換のうちでその図形を保つようなものだけを考えることによって、図形の対称性を表す群を取り出すことができる。

313:132人目の素数さん
12/04/22 18:51:35.13
横槍すみません
対称的な変換全体が群になるのは分かりますが、その逆で任意の群を対称的な変換全体と見なせるとは言えないのでは?

314:現代数学の系譜11 ガロア理論を読む
12/04/22 19:38:34.55
>>313

>対称的な変換全体が群になるのは分かりますが、その逆で任意の群を対称的な変換全体と見なせるとは言えないのでは?

横槍OKですよ

”群の概念は、数学的対象 X から X への自己同型の集まりの満たす性質を代数的に抽象化することによって得られる。
この集まりは X の対称性を表現していると考えられ、結合法則・恒等変換の存在・逆変換の存在などがなりたっている。”>>312

という
数学的対象 X から X への自己同型として取り出された射の演算を抽象化した(数学的対象 X から切り離した)代数的構造を表すものと捉えるべきかも
そういう意味では、任意の群は演算(群としての)を持つ変換の集合と良いと思う

さらに付言すれば、数学的対象 Xに対して群を超えて、いろいろなものが考えられる
とすれば、群で思考停止するのではなく、対称性という非数学言語で語っておくことが、既存の代数的構造を超えて行く力になると思うんだ

URLリンク(ja.wikipedia.org)
数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。
代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。
また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。
逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。

現代では、代数学とは代数系を研究する学問のことであると捉えられている。

代数的構造の例
一つの演算によって決まる代数的構造
マグマ: 一つの二項演算の定義された集合。
擬群 (quasi-group): a × x = c であるような x が一意に決まるマグマ
Loop: 単位元 e を持つ擬群。したがって、任意の元が逆元を持つマグマとも言える。
半群: 結合法則を満たすマグマ モノイド: 単位元を持つ半群

315:現代数学の系譜11 ガロア理論を読む
12/04/22 19:40:37.10
>>314
訂正

そういう意味では、任意の群は演算(群としての)を持つ変換の集合と良いと思う
 ↓
そういう意味では、任意の群は演算(群としての)を持つある(抽象的な)変換の集合として良いと思う

316:132人目の素数さん
12/04/22 19:51:35.38
>>311
例外が多すぎるだろw



317:現代数学の系譜11 ガロア理論を読む
12/04/22 19:57:07.82
>>316
>例外が多すぎるだろw

確かに、例外が多いか
が多くの人は、群S5も対称性ありに含めていると思うけどね、たいがいの数学者は
S5とC5を区別する確かな規範もないだろう

318:132人目の素数さん
12/04/22 21:03:18.83
>>317
ある群が対称性をもつかどうかの判定基準は何?


319:現代数学の系譜11 ガロア理論を読む
12/04/22 21:24:27.25
>>318
>ある群が対称性をもつかどうかの判定基準は何?

あるとも言えるし、無いともいえる

あるとも言える:群の定義(2項演算になるか? 結合法則は? 単位元は? 逆元は?)
無いともいえる:ボンクラが見れば群の構造が見えないが、大数学者が見れば隠れた群構造を見抜ける場合がある

320:132人目の素数さん
12/04/22 21:26:09.44
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

321:132人目の素数さん
12/04/22 21:28:01.47
だめだこりゃ


322:132人目の素数さん
12/04/22 21:28:49.73
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

323:現代数学の系譜11 ガロア理論を読む
12/04/22 21:32:46.65
>>319
失礼

群になるかどうかと勘違い

>ある群が対称性をもつかどうかの判定基準は何?

? なんらかの対称性があるから、群があると個人的には思う

”対称性、又はシンメトリー (英語: symmetry) は、ある変換に関して不変である性質である。”>>212

対称性には、変換と不変というキーワード
この変換を演算と考えて、二つの演算に>>319の群の定義(2項演算になるか? 結合法則は? 単位元は? 逆元は?)を当てはめる

群構造があるなら、群の定義(2項演算になるか? 結合法則は? 単位元は? 逆元は?)はすべてOK

そこで、「群の概念は、数学的対象 X から X への自己同型の集まりの満たす性質を代数的に抽象化することによって得られる。」>>312から
数学的対象 X になんらかの対称性があるんだと

群自身に対称性を求めるのは、地球の海に海水があるかと聞くが如し(同語反復に思える)

324:現代数学の系譜11 ガロア理論を読む
12/04/22 21:38:37.70
>>232
訂正

この変換を演算と考えて、二つの演算に>>319の群の定義(2項演算になるか? 結合法則は? 単位元は? 逆元は?)を当てはめる
 ↓
この変換を演算と考えて、こつの演算に

325:132人目の素数さん
12/04/22 21:39:08.89
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

326:現代数学の系譜11 ガロア理論を読む
12/04/22 21:43:16.19
>>232
>数学的対象 X になんらかの対称性があるんだと
>群自身に対称性を求めるのは、地球の海に海水があるかと聞くが如し(同語反復に思える)

補足
数学的対象 Xの対称性を、群という代数的構造として取り出す
加藤和也風に言えば、数学的対象 Xのシンメトリー(対称性)の化身が群だと
対称性の化身に、対称性があるか無いかを問うのはナンセンスだと思うぞ

327:132人目の素数さん
12/04/22 22:13:41.77
>>326
>>311で方程式で対称性を持つものと持たないものがあると
書いてある。

328:132人目の素数さん
12/04/22 22:33:40.38
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

329:132人目の素数さん
12/04/22 22:48:50.19
>>326
対称性から群構造を抽出出来るからといって、
全ての群が対称変換全体として表現可能とは限らないというのが問題なのだと思うのですが。

330:現代数学の系譜11 ガロア理論を読む
12/04/22 22:54:07.28
>>327
> >>311で方程式で対称性を持つものと持たないものがあると
>書いてある。

まあ、対称性というのは、非数学言語だから
方程式の対称性をどう定義するかも問題だが

しかし、一般の5次方程式、そのガロア群S5。この場合に、方程式は対称性を持つと定義するのかどうか

そこで、>>317に「が多くの人は、群S5も対称性ありに含めていると思うけどね、たいがいの数学者は
S5とC5を区別する確かな規範もないだろう」と書いた

群S5の場合も対称性ありに含めようぜというのがおいらの立場だよ
一般の5次方程式に対称性を認めるべきかどうか

一般の5次方程式をゼロベースで捉える考えもある
だが { e } 単位元=1番目=スタート地点で捉える考えもある

どちらでも良いが、C5の場合に対称性を認めるなら、S5にも対称性を認めて、S5は対称性において一番低い状態(物理学における基底状態)だと思えばどうよ
それで、多少はS5の場合も対称性ありとする違和感は緩和されるだろう

331:現代数学の系譜11 ガロア理論を読む
12/04/22 23:04:33.09
>>329
>対称性から群構造を抽出出来るからといって、


ちょっと違うと思う
対称性から群構造を抽出出来るかどうか。それは、半群でしかない場合もありうる

>全ての群が対称変換全体として表現可能とは限らないというのが問題なのだと思うのですが。

ここはちょっと意味が取れないが、下記ご参照
URLリンク(reference.wolfram.com)
MATHEMATICAチュートリアル
置換群
群には多くの異なる表現方法がある.特にすべての有限群は置換群として表現することができる.
つまり,有限群は常に 個の元からなる集合の自己同型の対称群 の部分群に同型なのである(ケーリーの定理).

この40年の間に置換群の操作で非常に効率的な手法が開発され,大規模な群の操作がコンピュータでできるようになった.
Mathematica は,数千の適度な次数の置換群,つまり個の元より多い置換群を扱うことのできるコマンドやアルゴリズムを提供する.

このチュートリアルは,互いに素な巡回形式で与えられた置換の生成のリストで指定された有限置換群を使って計算する基本的アルゴリズムをいくつか紹介する.

332:132人目の素数さん
12/04/22 23:11:01.96
>>330
群の位数の大きい方が対称性が高いと考えるのが普通だろう。
(x - 1)(x - 2)(x - 3)(x - 4)(x - 5) = 0
のガロア群は自明群なので対称性は無い。

333:132人目の素数さん
12/04/23 00:00:21.54
方程式の対称性を定義しろよ。
定義しないとあんた以外の人間には理解不能。
あんた自身も分かってないから定義出来ないだろうがw


334:現代数学の系譜11 ガロア理論を読む
12/04/23 03:53:42.49
>>332
>群の位数の大きい方が対称性が高いと考えるのが普通だろう。

それは考え方の相違
というか、「群の位数の大きい方が対称性が多いと考えるのが普通だろう」

図形の例をあげよう
左右対称の建物の正面図があるとする。これは線対称だ。位数2の群。人が直感的に把握できる対称性だ

次に、正多面体で群の位数と対称性の大きさを考える
”正多面体には全部で,正四面体,正六面体,正八面体,正十二面体,正二十面体の五種類しかないことが知られています.”正多面体群1(Joh著)
”正四面体群,正六面体群,正八面体群,正十二面体群,正二十面体群の位数は,それぞれ12,24,24,60,60 だということでした.”正多面体群2(Joh著)

正多面体群1(Joh著)に正多面体の図があるから見てくれ
どの図が対称性が高い低いと言えるのだろうか? 対称性を保つ変換の数が多い少ないとはいえても。さらに、正多面体では位数60までしか表すことはできない。S5の対称性は正十二面体は高いのか?

URLリンク(hooktail.sub.jp)
正多面体群1(Joh著)
URLリンク(hooktail.sub.jp)
正多面体群2(Joh著)
URLリンク(hooktail.org)
群論入門 †

>(x - 1)(x - 2)(x - 3)(x - 4)(x - 5) = 0
>のガロア群は自明群なので対称性は無い。

ガロア群は、{ e } 単位元のみからなる、自明群だ
だから、「対称性は無い」は正しい。だが、{ e }も群だ。だから>>311でゼロの発明に例えた。ゼロを数と扱うかどうかで立場は異なるよと

335:現代数学の系譜11 ガロア理論を読む
12/04/23 04:10:09.09
>>334
訂正スマソ

S5の対称性は正十二面体は高いのか?

S5の対称性は正十二面体よりは高いのか?

>>333
>方程式の対称性を定義しろよ。
>定義しないとあんた以外の人間には理解不能。
>あんた自身も分かってないから定義出来ないだろうがw

「方程式の対称性を定義しろよ」は、>>40の梅村先生に言ってくれ
「定義しないとあんた以外の人間には理解不能」というが、>>40
URLリンク(www.sci.nagoya-u.ac.jp)
眠りから覚めた微分ガロア理論 梅村 浩 多元数理科学専攻教授 名古屋大学理学部・理学研究科 広報誌 No.10 p14_15

を読んで理解できない? まあ、細部を完全に理解することは出来ないとしても、言いたいことは分かるはず。数学的内容を自然言語で完全に表現するのは無理だから、細部にこだわることが間違い
これ(梅村)は元々、数学の論文でもなく哲学の論文でもなく、広報誌の一文だ
これに逐一の定義は不要。それぞれが、自然言語の範囲で理解すれば良い

そして、自分は「隠れた対称性」という、梅村先生の視点に感心した。その感じは>>282に補足した通りだよ
ここまで書いて、「隠れた対称性」が分からないというなら、名古屋大学へ行ってくれ
(ここで、おいらが梅村先生と独立に、方程式の対称性を定義してあなたと論争しても無意味だろ?)

336:現代数学の系譜11 ガロア理論を読む
12/04/23 07:42:10.77
>>332
いま思ったが、それを排除するには既約方程式に限ればいい
実質的にはそれで問題ないでしょ

337:132人目の素数さん
12/04/23 07:55:09.76
>既約方程式に限ればいい
今更都合の良い事云うなよ

338:132人目の素数さん
12/04/23 08:03:37.94
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

339:132人目の素数さん
12/04/23 08:39:55.32
>>335
梅村は説明してないし、あんたが広めてるんだから
説明責任はあんたにある。
方程式の対称性ってなによ?
あんたによると可解でない方程式は対称性がない。
これは何故?

340:132人目の素数さん
12/04/23 10:31:48.82
方程式 (x^2 -2)(x^2 - 3) = 0 は、
当然ガロア理論の対象とすべきだ。

341:132人目の素数さん
12/04/23 11:08:57.74
ここに書いてる人は、コーシーやフーリエなど、ガロアと同時代の多くの御偉い数学者達が
代数方程式の係数からそれを代数的に解けるかどうかを判定しようとしていた
ということは御存じだな。
ガロア群をコンピュータで計算出来る今では即判定出来るが、
当時ガロア理論ではこれは出来なかった。
今でもこれに関する理論はない。
ガロア理論をやるならこれマメ知識な。

342:132人目の素数さん
12/04/23 11:16:01.28
誤解を招きかねないから訂正:
>>341
>当時ガロア理論ではこれは出来なかった。

コンピュータのなかった当時の状況では、ガロア理論ではこれは出来ない。
に変更。

343:132人目の素数さん
12/04/23 11:47:27.00
>>341
コンピュータ使っても10次方程式くらいまでしか判定出来ないはず。
最新の結果は知らないからもっと次数が高いかも
知れないが30次とか無理だろ。


344:132人目の素数さん
12/04/23 11:53:36.36
>>341
次数が低くければコンピュータがなくても計算出来る。
例えば5次方程式は手計算で出来る。
根気と時間が必要だが。

345:現代数学の系譜11 ガロア理論を読む
12/04/23 13:22:34.30
>>337
あんたのために言ってやっているのに、迷える子羊のために

346:現代数学の系譜11 ガロア理論を読む
12/04/23 13:31:50.82
>>339
>あんたによると可解でない方程式は対称性がない。

本当に数学科?
数学的には、5次の非可解の方程式のガロア群はS5、6次ならS6・・・
これを対称性がないというのか、あるというのか
そんなことは各人の持つ数学のレベルで決まる話で

S5、S6に対称性を感じ取れない人には、対称性はないとなるだけ
君のレベルならそういうこと

だが、その論法ならS3、S4とS5、S6で
S3、S4には対称性あり(可解だから)、S5、S6には対称性なし(非可解)だと

それが君の数学レベルだということよ

347:現代数学の系譜11 ガロア理論を読む
12/04/23 13:35:11.29
>>340
本当に数学科?

勝手にしなよ
当然ガロア理論さまは、拒否はしないだろうさ

だが、方程式 (x^2 -2)(x^2 - 3) = 0 にガロア理論を適用してなにが面白いのかね?
それが君の数学レベルだと理解していいか

348:現代数学の系譜11 ガロア理論を読む
12/04/23 13:37:13.52
>>341-342
乙です

349:現代数学の系譜11 ガロア理論を読む
12/04/23 13:43:39.06
>>343
> 30次とか無理だろ。

ガロア理論が広まったあと、しばらくはべき根以外の楕円関数などを使って解く研究が流行った
だが、それも一段落し、一方コンピュータによる数値計算手法が発展した
いまさら30次の根の公式もいらんだろうと

そこで、高次多項式による方程式論から離れて行き、群論を含むガロア理論は方程式以外の多くの分野に応用されるようになった
そしていま21世紀

350:現代数学の系譜11 ガロア理論を読む
12/04/23 13:52:48.08
>>344
>例えば5次方程式は手計算で出来る。
>根気と時間が必要だが。

手計算をしているのが下記。数学科の大学の図書館ならあるだろう
エム・ポストニコフの『ガロアの理論』(1964年4月25日,東京図書出版発行)>>281

数式処理は下記2件
URLリンク(staff.aist.go.jp) >>261
5次方程式の可解性の高速判定法 元吉文男 著 - FM Memo 19961017-01

URLリンク(repository.hyogo-u.ac.jp) >>264
可解な5次方程式について 大迎規宏 兵庫教育大修士論文 2003

いずれも既出だが、興味のある方はどうぞ

351:132人目の素数さん
12/04/23 14:02:04.29
スレ主とまともな議論をすることは不可能だとわかった。

352:132人目の素数さん
12/04/23 17:24:31.21
>>347
>方程式 (x^2 -2)(x^2 - 3) = 0 にガロア理論を適用してなにが面白いのかね?
では聞くが、ほかの方程式の何処が面白いの?

353:132人目の素数さん
12/04/23 17:56:20.99
>>349
出鱈目言うなよw


354:現代数学の系譜11 ガロア理論を読む
12/04/23 21:34:15.31
>>351
そっくり同じ言葉を返すよ
議論にならんな、レベル低い

355:132人目の素数さん
12/04/23 21:41:06.07
あんた考えがどっかおかしい。
頭のネジがゆるんでる。

356:現代数学の系譜11 ガロア理論を読む
12/04/23 21:42:50.92
>>352
>>方程式 (x^2 -2)(x^2 - 3) = 0 にガロア理論を適用してなにが面白いのかね?
>では聞くが、ほかの方程式の何処が面白いの?

おいおい、既約方程式に限ればいい>>336と言ったろ?
可約な方程式と既約な方程式の区別もつかないのか?

可約な方程式にロア理論を適用してなにが面白いのかね?
既約な方程式に適用しなければ面白くない。というか、もともと既約な方程式に適用すべき理論なのだよ

(可約に適用できないわけじゃないが、普通可約なら既約にしてから考える。それが思考の節約というもの)

357:132人目の素数さん
12/04/23 21:53:31.87
>>356
ガロア理論は可約な方程式でも成り立つ。
ガロアの主定理を述べるのに
普通は既約性を仮定しないだろ。

358:現代数学の系譜11 ガロア理論を読む
12/04/24 04:41:36.52
>>353
確かに適当に書いた
正確には、下記を参照してもらいたい
URLリンク(ja.wikipedia.org)
代数方程式
(抜粋)
ガロアが楕円モジュラー関数を用いる超越的方法では一般的解法が存在することを予言し、その遺書に書き残している。
ガロアの死後、エルミートは、楕円モジュラー関数による五次方程式の解の公式を導いた。
なお、アーベルもモジュラー方程式の研究を行っていたことから、彼にも解の公式のアイディアがあったであろうと考えられている。
エルミートから現在まで、5 次より高次の方程式の解の公式は様々に提案されている。

工学的見地からは、これらの解の公式に拠る解法は計算量的な実用性があまりないため、3 次より高次の方程式は数値計算による解法が一般的である。
中には、固有値問題へ帰着して行列の固有値計算のアルゴリズムが用いられることもある。

URLリンク(ja.wikipedia.org)
ガロア理論
URLリンク(en.wikipedia.org)
Galois theory

359:現代数学の系譜11 ガロア理論を読む
12/04/24 05:19:22.18
>>357
>ガロア理論は可約な方程式でも成り立つ。
>ガロアの主定理を述べるのに
>普通は既約性を仮定しないだろ。

それは正しいが。そもそも>>40
URLリンク(www.sci.nagoya-u.ac.jp)
眠りから覚めた微分ガロア理論 梅村 浩 多元数理科学専攻教授 名古屋大学理学部・理学研究科 広報誌 No.10 p14_15

の中の
「代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。」に対し

可約でガロア群が自明({ e } 単位元のみからなる)な場合を反例として挙げて、対称性を否定する。これはナンセンスだろう。暗黙の前提として、自明は排除して良い。これは一般向け文章なのだから
かつ、ガロア群が自明の場合を自分勝手に含めて、”隠れた対称性”が「分からん、分からん」と主張する。何を言いたいのか、こっちが「分からん」かったよ
ようやく、分かったけどね。大いなる誤解だと

360:現代数学の系譜11 ガロア理論を読む
12/04/24 05:26:13.24
>>356
訂正

可約な方程式にロア理論を適用してなにが面白いのかね?
 ↓
可約な方程式にガロア理論を適用してなにが面白いのかね?

361:現代数学の系譜11 ガロア理論を読む
12/04/24 05:45:34.68
>>309
訂正スマソ

おいらは、梅村先生を指示する
 ↓
おいらは、梅村先生を支持する

362:現代数学の系譜11 ガロア理論を読む
12/04/24 07:10:43.06
>>291
>訂正:対称性の破壊者じゃなく対称性の破れだな。
>しかしコンヌの言ってる意味はたいして違わない。
>ガロアが論文の最初にやったことは根の間の
>対称性を最大限に壊すことであった。

こんな風にコンヌの文章を誤訳誤解して、勝手な対象性のイメージを持って、わーわー言われちゃかなわんな
une fonction V>>290が、resolvanteを使わなくとも、それが>>15のガロア分解式(リゾルベント)と同じということは同意するんだろ

そして、ガロア分解式(リゾルベント)という呼称をコンヌが知らないわけがない
ならば、コンヌがresolvanteという言葉は不適当で今後は”brisure de Galois”と提唱したならともかく(コンヌが新しいコンセプトを提唱するならそうするだろう)、ガロア分解式(リゾルベント)という呼称は認めているんだろうよ

では、なぜresolvanteでなく、Brisureとしたのか?
文の表題を見ると”La Pensee d'Evariste Galois et le Formalisme moderne”だ>>236

広く、ガロア理論に詳しくない人にもEvariste Galoisを紹介しようという文だと思う
その視点からみると、resolvanteよりBrisureの方が一般読者に分かりやすいと思ったのではないか

日本語にすれば、”破れ”でも”分解”でもほぼ同じ意味だろうが(個人的には”分解”が分かりやすいと思うが)、”破壊”はちょっと違うように思う

363:337
12/04/24 07:22:35.20
>>362
フランス語読めないのに何故わかる?
あんた考えがおかしい。

364:132人目の素数さん
12/04/24 07:25:19.32
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

365:132人目の素数さん
12/04/24 14:31:11.02
[TS/VX]
[GF/MP]
[RS/HK]
[KBGE/HTAK]
[O/H]
[SEGA/MARVEL]
[VF/SC]

366:132人目の素数さん
12/04/24 14:31:34.46
[TS/VX]
[GF/MP]
[RS/HK]
[KBGE/HTAK]
[O/H]
[SEGA/MARVEL]
[VF/SC]
[TS/GF/VX/MP]

367:現代数学の系譜11 ガロア理論を読む
12/04/24 22:35:15.60
>>363
>フランス語読めないのに何故わかる?
>あんた考えがおかしい。

なぜ?
1.仏語は分からなくとも、数学の論文だから、数式とか記号が出てくる。ここはほぼ共通だ>>280
2.ネット翻訳で、仏→日は使えないが仏→英はかなり使える>>245
URLリンク(www.excite.co.jp)
3.仏語と英語でスペルが似ている単語があるので、意味の類推が可能
  例えば、仏語:Brisure de symetrie、英語:Break of symmetryで、Brisure vs Break、symetrie vs symmetryの如し
4.仏語辞書を引けばさらに意味が取れる

文学ならともかく、数学でしょ。論理的におかしなことがないと分かっているし

368:現代数学の系譜11 ガロア理論を読む
12/04/24 22:47:04.95
ところで>>280へ戻らせてもらうが
(再度引用)
>>245より (原文 URLリンク(www.alainconnes.org) >>236
2. Brisure de symetrie
Le premier pas de la demarche de Galois consiste a briser de maniere maximale
la symetrie entre les racines d'une equation en choisissant une fonction auxiliaire
largement arbitraire de n variables. Il enonce


2. Break of symetrie
The first step of the demarche of Galois consists has break mani maximal era the symetrie between the roots of an equation while choosing an auxiliary function extensively arbitrary of variable n. It expresses
(仏→英は、ほぼ逐語訳)
・・・
V = Aa + B b + C c +
(引用おわり)

で、表題の仏語:Brisure de symetrie、英語:Break of symmetryてところで、Breakが破壊でも破れでも分解でも良いとして
Break of symmetryとして、まずsymmetryじゃないのか?

369:337
12/04/24 22:51:29.94
>>367
じゃあ訳してくれ。取りあえずBrisure de symetrieから
arbitraire de n variables. まで。

370:現代数学の系譜11 ガロア理論を読む
12/04/24 22:55:14.74
>>368
>Break of symmetryとして、まずsymmetryじゃないのか?

1.言いたいことは、まずsymmetryがあってそれをBreakするのだと
2.まずなにか、symmetryがあるから、Breakできる (余談だが、Break downは分解という意味があるよ)
3.もし、これを認めるなら、コンヌもまずsymmetryありきで、この文を書いたことになるけど?
4.ならば、symmetry=対称性とすると、梅村氏が対称性と書いて、定義がないの二流だのという批判があったけど、そっくりこの文にも批判は当てはまるな

371:現代数学の系譜11 ガロア理論を読む
12/04/24 23:00:08.73
>>370 つづき

>>40より再録
URLリンク(www.sci.nagoya-u.ac.jp)
眠りから覚めた微分ガロア理論 梅村 浩 多元数理科学専攻教授 名古屋大学理学部・理学研究科 広報誌 No.10 p14_15

彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。

これで、対称性が定義されいないの、意味不明だのとさんざん言ったね

Brisure de symetrie>>368のsymetrieのコンヌによる定義はなんだ?

372:337
12/04/24 23:01:51.61
>>370
ごたくはいいからまず翻訳してくれ。
話はそれからだ。

373:132人目の素数さん
12/04/24 23:07:48.93
翻訳まだあ?


374:132人目の素数さん
12/04/24 23:10:01.29
意味分かるって言ったじゃん。
なら翻訳出来るだろ。
意訳いい。

375:132人目の素数さん
12/04/24 23:10:44.95
意訳でいい。

376:132人目の素数さん
12/04/24 23:13:32.94
まさか今必死に辞書引いて調べてるわけじゃないよな?

377:132人目の素数さん
12/04/24 23:16:04.66
>>370
意味わかると言ったのは嘘なのか?

378:132人目の素数さん
12/04/24 23:24:40.95
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

379:現代数学の系譜11 ガロア理論を読む
12/04/24 23:52:13.74
>>369
では、ご要望に応えて

>>245より (原文 URLリンク(www.alainconnes.org) >>236

2. Brisure de symetrie
Le premier pas de la demarche de Galois consiste a briser de maniere maximale
la symetrie entre les racines d'une equation en choisissant une fonction auxiliaire
largement arbitraire de n variables. Il enonce


2. Break of symmetry
The first step of the demarche of Galois consists has break mani maximal era the symmetry between the roots of an equation while choosing an auxiliary function extensively arbitrary of variable n. It expresses
(仏→英は、ほぼ逐語訳)
・・・
V = Aa + B b + C c +


2.対称性の分解
ガロアが構築した手段の最初のステップは、n 変数の広範囲に任意性のある補助関数(訳注:後で出てくるガロアリゾルベントV>>15)を選ぶことで、方程式の根の間の対称性(symmetry)を最大限度に分解したことだ。
それは、次のように表される
Lemme
・・・
V = Aa + B b + C c +
(和訳おわり)
とまあ、こんなところがおいらの解釈だよ

380:現代数学の系譜11 ガロア理論を読む
12/04/24 23:53:54.21
>>379
つづき

(参考)
demarche:処理法, 手続き, 手段, 処置. goo辞書より URLリンク(dictionary.goo.ne.jp)

consists:構築した

de maniere URLリンク(class.kitakama-france.com)
 d'une maniere 形容詞、 de maniere 形容詞、 d'une facon 形容詞、 de facon 形容詞
の 4 通り可能です。
意味は、
  (1)「~な仕方で」「~な風に」
  (2)単に「~に」〔形容詞を副詞化する〕
となります。
もともと maniere と facon は、ともに「仕方、やり方」という同じ意味の女性名詞です。

auxiliary:補助

extensively:広範囲に, 広く.

arbitrary:自由裁量による、《数学》任意の, 不定の

381:現代数学の系譜11 ガロア理論を読む
12/04/25 00:01:24.70
>>380
つづき

It expressesの It は、おそらく形式主語というやつで、その前の文全体を指し、次のLemmeがその数学的内容を表す
まあ、フランス語は分からなくても、ネットの仏→英翻訳と、仏語と英語の意味を辞書で調べればこの程度の解釈は可能だよ

訳にいちゃもんつけるならどうぞ
だが、具体的にどの箇所がどうかをきちんと指摘してくれよ。漠然とした批判で逃げるなよ

ところで、翻訳要求はこれだけにしておいてくれ。これ以上の翻訳は有料だぜ
で、こちらは翻訳をしたんだから、>>371の「Brisure de symetrie>>368のsymetrieのコンヌによる定義はなんだ?」に応えてもらおうか

382:132人目の素数さん
12/04/25 01:14:43.18
いくら長々と書き込んでもおっさんの理解があやしいのは事実w

383:132人目の素数さん
12/04/25 04:40:01.49
>>379
で俺の意訳(>>291)のどこが間違ってる?


384:現代数学の系譜11 ガロア理論を読む
12/04/25 05:29:54.27
>>382
>いくら長々と書き込んでもおっさんの理解があやしいのは事実w

それは認めるがね
というか、おいらの理解は猫さんレベル(大学教員)には行ってない
せいぜい、大学の数学科でガロア理論を学んだ直後くらいの理解だろうさ。で、それがどうした?

このスレは、ガロア理論そのものではなく
”「現代数学の系譜11、アーベル、ガロア、群と代数方程式、守屋美賀雄訳」にチャレンジしております。”>>1という方のお役に立とういうスレの趣旨だ

ガロアの原論文を読むにはそれで十分だろうさ
それ以外の話は、引用をつけている。理解は不十分でも自分なりに正しいと判断したものだけを引用しているのさ

385:安倍のぶざまな辞任劇、ウヨに大打撃だな>>110
12/04/25 05:42:44.34
>>383
>で俺の意訳(>>291)のどこが間違ってる?

>>291については、すでに>>362にコメントをつけたよ
(>>291より)
>訂正:対称性の破壊者じゃなく対称性の破れだな。
>しかしコンヌの言ってる意味はたいして違わない。
>ガロアが論文の最初にやったことは根の間の
>対称性を最大限に壊すことであった。

>>362より)
>こんな風にコンヌの文章を誤訳誤解して、勝手な対象性のイメージを持って、わーわー言われちゃかなわんな
>une fonction V>>290が、resolvanteを使わなくとも、それが>>15のガロア分解式(リゾルベント)と同じということは同意するんだろ
>日本語にすれば、”破れ”でも”分解”でもほぼ同じ意味だろうが(個人的には”分解”が分かりやすいと思うが)、”破壊”はちょっと違うように思う

>>231より)
>アランコンヌはガロアの業績の紹介の中で
>ガロアを対称性の破壊者と呼んでいる。

>>239
>なんで対称性の破壊者と呼んだかわかるかな?
>ガロアは論文の始めに対称群で不変となる式でなく
>恒等置換以外の全ての置換で不変とならないもの
>を定義してそれを議論の中心においた。
>このことを指している。
>コンヌだからこそ言える台詞。
>そこらの二流の数学者じゃ群といったら対称性と
>脊髄反射的に月並みな台詞を吐くのが関の山。
(引用おわり)

291の”しかしコンヌの言ってる意味はたいして違わない”は間違い。そして、そもそもの231の”ガロアを対称性の破壊者と呼んでいる”が誤訳誤解
239の”なんで対称性の破壊者と呼んだかわかるかな?”も誤訳誤解がもとだろう

386:安倍のぶざまな辞任劇、ウヨに大打撃だな>>110
12/04/25 05:51:23.61
>>385
つづき

あなたの引用したアランコンヌの文をよく読んでみれば
>>379
表題:2. Break of symmetry これ、対称性が前提として存在するってことでは?
文中:the symmetry between the roots of an equation これ、方程式の根の間の対称性(symmetry)が前提として存在するってことでは?

コンヌは”ガロアを対称性の破壊者と呼んでいる”のではなく
”そこらの二流の数学者じゃ群といったら対称性と脊髄反射的に月並みな台詞を吐く”と同じことをしていると思うのだが

(方程式の根の間の対称性(symmetry)を前提として、群といったら対称性だと)

387:132人目の素数さん
12/04/25 06:19:43.08
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

388:132人目の素数さん
12/04/25 06:20:26.61
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

389:132人目の素数さん
12/04/25 06:22:09.57
>>385
だから>>291の訳のどこが間違ってる?
分解じゃなく壊すと訳したからか?

390:132人目の素数さん
12/04/25 06:30:46.71
>>385
安倍のぶざまな辞任劇ってなによ?

391:132人目の素数さん
12/04/25 08:41:47.80
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

392:現代数学の系譜11 ガロア理論を読む
12/04/25 20:09:18.09
>>390
失礼へんなのが混じった

>>389
>だから>>291の訳のどこが間違ってる?
>分解じゃなく壊すと訳したからか?

いや、あながち間違っちゃいない

Brisure de symetrie 英訳Break of symmetry
Brisureに壊すという意味はある

が、あとのune fonction auxiliaire:V = Aa + B b + C c + を日本語では、ガロアリゾルベント(分解式)V>>15と呼ばれていることとの整合性からも、分解の方が分かりやすいだろうと
”壊す”なら、分解式ではなく破壊式だろうが、そんな数学用語はない

393:現代数学の系譜11 ガロア理論を読む
12/04/25 20:17:48.73
>>392
つづき

>Brisure de symetrie 英訳Break of symmetry

訳案
1.対称性の破壊
2.対称性の破れ
3.対称性の分解

このどれが良いか
破壊は、カナヅチで物を壊すみたいだ
対称性の破れは、物理学の自発的対称性の破れを連想する
分解は、ガロアリゾルベント(分解式)を連想するので、これが一番だろうよ

394:132人目の素数さん
12/04/25 20:51:01.01
>>379
対称性を最大限度に分解したとはどういう意味?


395:132人目の素数さん
12/04/25 20:53:56.20
>>393
物理の対称性の破れに掛けてるんだよ。
鈍いな。

396:132人目の素数さん
12/04/25 21:03:53.86
誰が訳したかしらないがレゾルベントを分解式なんて訳すから
へんな誤解する人間が出てくる。
resolventはresolveから来てる。
resolveとは今の場合だと方程式を解くといこと。
与えられた方程式を解くための補助的な方程式を
レゾルベントと言う。

397:132人目の素数さん
12/04/25 21:17:22.75
>>392
その一次式をガロアレゾルベントというのか?
じゃあそれの最小多項式は何という?

398:現代数学の系譜11 ガロア理論を読む
12/04/25 22:46:46.24
>>394
>対称性を最大限度に分解したとはどういう意味?

質問する相手を間違えているよ
質問する相手は自分だろ?

そもそも、そのコンヌの文を紹介したのは、自分だろ?
「アランコンヌはガロアの業績の紹介の中で
ガロアを対称性の破壊者と呼んでいる。」と>>231

この文のニュアンスは、”対称性の否定”だと思った。それまでの文脈からね
>>239
>なんで対称性の破壊者と呼んだかわかるかな?
>ガロアは論文の始めに対称群で不変となる式でなく
>恒等置換以外の全ての置換で不変とならないもの
>を定義してそれを議論の中心においた。
>このことを指している。
>コンヌだからこそ言える台詞。
>そこらの二流の数学者じゃ群といったら対称性と
>脊髄反射的に月並みな台詞を吐くのが関の山。
(引用おわり)
と言ったろ? 自分で自分の言った文の意味を考えて見ろよ

そして、答えてくれ
>>118
だから対称性ってなによ?
あんた意味分かってるの?
梅村も説明してないじゃん
(引用おわり)

をそっくりそのまま、”コンヌも説明してないじゃん”と置き換えてやるからよ

399:現代数学の系譜11 ガロア理論を読む
12/04/25 22:52:01.94
>>395
まあ、博識なことで
>>396
法律論でいう小数説だな
URLリンク(blogs.yahoo.co.jp)
法律学用語の基礎知識…らしきもの 2010/11/8

「多数説」とは、ある争点について、法律学会で多数派に属する学説であり、「少数説」とは、ある争点について、法律学会で少数派に属する学説のことです。

400:現代数学の系譜11 ガロア理論を読む
12/04/25 22:56:02.23
>>397
いろいろ物知りなんだね。ご苦労さん

>>120
対称性ってなによ?
意味不明じゃん
梅村も対象性の意味を書いてないだろ
(引用おわり)

の梅村をそっくりそのまま、”コンヌ”と置き換えてやるからよ
自分のした質問について、このコンヌの文章について、答えてくれ

401:現代数学の系譜11 ガロア理論を読む
12/04/25 23:07:33.22
>>399
補足

>resolveとは今の場合だと方程式を解くといこと。
>与えられた方程式を解くための補助的な方程式を
>レゾルベントと言う。

補助的な方程式は、une fonction auxiliaire (an auxiliary function) >>379( by コンヌ)
で、そのなかで特別重要な式を、ガロアリゾルベント(分解式)とか、ラグランジュの分解式( by 矢ケ部>>169)とか名前をつけたのだと思うが

402:現代数学の系譜11 ガロア理論を読む
12/04/25 23:24:51.56
>>400
あなたは言いました
(以下引用)
>>102
そこで使っている対称性の意味をきちんと説明しないと
隠れた対称性という言葉に酔ってるように見える。
はっきり言ってイミフ

>>108
イメージするにも言ってる意味が分からない
隠れた対称性って何なの?

>>159
ごたくはいいからあんたのいう隠れた対称性って何?

>>197
まともな数学者は群論は対称性を研究するものだ
なんて言わない。

>>210-211
だから対称性ってなによ?

少数の二流の数学者の好い加減な言葉を鵜呑みに
してそれを2chで宣伝するのはやめてくれ。
学生を混乱させる。
(引用おわり)

梅村氏の隠れた対称性>>40を、そっくりコンヌの文>>379のBrisure de symetrie=Break of symmetryに置き換えてやるよ
コンヌのいう、symetrieとは? Brisureとは? コンヌも少数の二流の数学者の好い加減な言葉なのか? それもと鵜呑みか?

403:現代数学の系譜11 ガロア理論を読む
12/04/25 23:32:15.66
>>402
おれがコンヌの解釈を付け加えておいてやるよ
2. Brisure de symetrie の最後はこうだ

Galois note que l'equation Q(V ) = 0 obtenue a partir d'un facteur irreductible
de l'equation en V a cette propriete particuliere que ses racines sont fonctions
rationnelles de l'une quelconque d'entre elles. En particulier il sut d'adjoindre
formellement une racine de cette equation, en travaillant avec l'algebre des polyn^
omes modulo les multiples de Q pour adjoindre en fait toutes les racines. Chacune
d'entre elles est de la forme R(x) ou R est une fonction rationnelle et (toujours
en travaillant modulo Q) ces fonctions forment un groupe pour la composition (i.e.
RS(x) = R(S(x))). Ce qui est loin d'^etre evident a ce stade est que ce groupe est
en fait independant du choix de la fonction auxiliaire V (a; b; ; z) et ne depend
donc que de l'equation proposee.

Galois Note that the equation Q (V) = 0 is obtained from an irreducible factor
of the equation V has this property and th ere Particular features are that its roots
sound of any of them. In particular it is enough to add
formally a root of this equation, working with the algebra of polynomials
polynomials modulo multiples of Q to actually add all the roots. each
of them is of the form R (x) or R is a rational function and (always
working modulo Q) these functions form a group for composition (ie
R S (x) = R (S (x))). Which is far from being evident ^ at this stage is that this group is
in fact independent of the choice of ut the auxiliary function V (a, b, z) and only depends
so that the equation about ee.

by google 翻訳 URLリンク(translate.google.co.jp)

404:現代数学の系譜11 ガロア理論を読む
12/04/25 23:41:41.41
>>403
つづき

ここで、group (群 仏 groupe)が出ている
ガロア分解式からガロア群に

だから、この後が
3. Groupe de Galois
と続きます。

ということは
2. Brisure de symetrie で、コンヌはガロア分解式 Vを紹介し、それが群を成すことを言い、3. Groupe de Galoisと続けた
symetrie → group → Groupe de Galois という流れ

その視点で、梅村>>40を再度見てみな
URLリンク(www.sci.nagoya-u.ac.jp)
眠りから覚めた微分ガロア理論 梅村 浩 多元数理科学専攻教授 名古屋大学理学部・理学研究科 広報誌 No.10 p14_15

彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。
(2)ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。
 方程式の場合、目のつけどころであるカナメの部分がガロア群である。ヒヨコのお尻と違って、方程式の対称性であるガロア群は隠れているので、発見するのが難しいのである。
(引用おわり)

おいらは、コンヌと梅村はほぼ同じことを、それぞれの言葉で語っていると思うけどどうよ?

405:現代数学の系譜11 ガロア理論を読む
12/04/25 23:43:57.35
>>403
補足
google 翻訳の仏→英はなかなかすごいよ

406:現代数学の系譜11 ガロア理論を読む
12/04/25 23:53:55.40
>>231-232
>>Brisker de symetrie
>
>Brisure de symetrie

おぬしこれ手打ちしたね
だが、>>403でおいらがしたように、このPDFは普通のワードなどの文同様に選択コピーが出来るんだ (スキャナーの文では無理だが、そうでなければ出来る場合が多い)
だから、それで簡単にgoogle 翻訳などにかけることができる

そうやって、コンヌの文を読んでみな。英文と対比すれば、仏文だけを読むより理解が早いだろう

407:132人目の素数さん
12/04/26 00:04:36.49

メディアは全部抑えてある。教団名を出したり逆らえばどうなるかわかってるだろうな?
<           _-=≡:: ;;   ヾ\            >
<         /          ヾ:::\           >
<         |            |::::::|          >
<        ミ|-=≡、 ミ≡==- 、 |;;;;;/          >
<         || <●>| ̄| <◎> |─ /\         >
<         |ヽ_/  \_/    > /         >
<        / /(    )\      |_/          >
<        | |  ` ´        ) |           >
<        | \/ヽ/\_/  /  |           >
<        \ \ ̄ ̄ /ヽ  /  /           >
<          \  ̄ ̄   /  /       \    >
  / /        ̄ ̄ ̄ ̄ ̄ ̄ ̄     \\ \ \
     ___
   / ー\ ナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウ
 /ノ  (@)\ ナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウナンミョウホウレンゲッキ
.| (@)   ⌒)\ ナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウナンミョウホウレンゲッ
.|   (__ノ ̄|  |   ///;ト,  ナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウナンミョ
 \   |_/  / ////゙l゙l;  ナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウナンミョ
   \     _ノ   l   .i .! |  ナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウナンミョ
   /´ 公明  `\ │   | .|  ナンミョウホウレンゲッキョウナンミョウホウレンゲッキョウナンミョ


408:132人目の素数さん
12/04/26 01:37:05.06
基本の理解があやふやなアホが何をいっても説得力がないなw


409:132人目の素数さん
12/04/26 01:48:48.73
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

410:132人目の素数さん
12/04/26 05:19:01.66
>>398
あんたが訳したんだろ。
俺じゃない。
対称性を最大限度に分解したとはどういう意味?


411:132人目の素数さん
12/04/26 05:22:25.82
>>399
Brisure de symetrie をgoogleで検索してみろ。


412:132人目の素数さん
12/04/26 05:29:52.63
>>400
誤魔化すなよ。
その一次式の最小多項式をガロアレゾルベントというのじゃないのか?
その多項式はガロア群の位数と同じ次数を持つ。

413:132人目の素数さん
12/04/26 05:46:03.20
>>406
見当はずれの解釈しておいて俺に講釈かよw
俺にはコンピュータ翻訳なんか不要。
因みに手打ちしたのは携帯から打ってるから。

414:132人目の素数さん
12/04/26 05:52:07.80
>>402
コンヌがそこで言ってる対称性とは根の置換で不変な有理式のこと
を言ってる。

415:現代数学の系譜11 ガロア理論を読む
12/04/26 06:24:37.17
>>414
>コンヌがそこで言ってる対称性とは根の置換で不変な有理式のことを言ってる。

それこそ意味不明だろ
対称性という抽象的な概念が、有理式という具体的なものだと。日本語の論理が破綻している

>>414
>俺にはコンピュータ翻訳なんか不要。

じゃ最初>>231で「アランコンヌはガロアの業績の紹介の中でガロアを対称性の破壊者と呼んでいる。」と解釈を間違えたのはなぜ?
もし、これが正しいと言い張るなら、この解釈の根拠の文を示せ。示せないなら、誤訳誤解で良いだろ

>>412
>誤魔化すなよ。
>その一次式の最小多項式をガロアレゾルベントというのじゃないのか?
>その多項式はガロア群の位数と同じ次数を持つ。

それって、おれが>>129あたりで説明していることと殆ど同じことだろ?

>>411
なるほど、 Brisure de symetrie は物理の対称性の破れにひっかけているのか
例えば、これだね
URLリンク(fr.wikipedia.org)
En physique, le terme brisure spontanee de symetrie renvoie au fait que, sous certaines conditions, certaines proprietes de la matiere ne semblent pas respecter les equations decrivant le mouvement des particules
(on dit qu'elles n'ont pas les memes symetries). Cette incoherence n'est qu'apparente et ne signifie pas que les equations soient fausses.
Cette notion joue un role important en physique des particules et en physique de la matiere condensee.

In physics, spontaneous symmetry breaking term refers to the fact that, under certain conditions, certain properties of matter does not seem to respect the equations describing the motion of particles
(they say they do not have the same symmetries). This inconsistency is only apparent and does not mean that the equations are false.
This notion plays an important role in particle physics and condensed matter physics.

416:現代数学の系譜11 ガロア理論を読む
12/04/26 06:32:35.59
>>410
>あんたが訳したんだろ。
>俺じゃない。
>対称性を最大限度に分解したとはどういう意味?

本当に数学やってる? 日常論理が弱くないか? ゆとり?
「対称性を最大限度に分解」は、「 a briser de maniere maximale la symetrie 」の逐語訳だ>>379

ならば、「 a briser de maniere maximale la symetrie 」に対して、あなたがどういう意味かを答えてくれればそれで良い
その質問は、コンヌの文を紹介したあなた(当然意味を理解しているんだろ?)に返って行くんだ
日本語でなくとも結構だ。仏語でコンヌの文を引用してくれるだけで結構ですよ

>>408
>基本の理解があやふやなアホが何をいっても説得力がないなw

良い勝負だな
じゃ、勝利宣言して良いな。あとは適当にあしらうよ

417:132人目の素数さん
12/04/26 06:59:51.13
>>416
意味分からずに訳したのか?
もしそうなら俺の訳に文句つけるのは10年早い。

418:132人目の素数さん
12/04/26 07:03:30.71
>>415
一個のレスに複数のレスを書くなよ。
分けて書け。紛らわしい。

419:132人目の素数さん
12/04/26 07:06:40.78
>>415
根の置換で不変な性質



420:132人目の素数さん
12/04/26 07:10:52.53
>>415
ここまで書いてもまだ分からないのか?
その一次式は根のどんな置換でも不変にならないだろ。
つまり最大限に対称性を壊したものがその式だ。

421:132人目の素数さん
12/04/26 07:13:33.15
>>415
その一次式の最小多項式をガロアレゾルベントというのなら
その一次式はガロアレゾルベントじゃない。

422:132人目の素数さん
12/04/26 07:15:46.47
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

423:132人目の素数さん
12/04/26 07:17:43.41
>>416
あんたと俺じゃ勝負にならない。
因みに>>408は俺じゃない。

424:現代数学の系譜11 ガロア理論を読む
12/04/26 07:19:56.47
>>416
追い討ちをかけておいてやろう

>>304
なんで剰余群が巡回群だと方程式が対称なんだよ。
百歩いや千歩譲ってそれが対称性を表しているとして
可解でないガロア群をもつ方程式はどうなんだ?
その方程式のガロア群がその対称性を表しているって
どういう意味?
(引用おわり)

コンヌのBrisure de symetrieが物理の対称性の破れにひっかけとようやく理解したあなた
だが、コンヌのsymetrieは、「可解でないガロア群をもつ方程式」をその対象から除外しているのか
いな、「可解でないガロア群をもつ方程式」こそがコンヌが紹介しようとしているガロア理論の対象ではないのか
このころのあんたのカキコを見ると、コンヌのsymetrieの意図を全く理解できていないとしか思えん (このころ自分の書いたことを読み返してみろ)

これ以上つっかかってきても、梅村氏の”隠れた対称性”>>40についてなした理解不足のカキコをそのまま、コンヌの"symetrie"に置き換えれば結局自分のした攻撃がそのまま自分に返ると
そして、”隠れた”の部分についても、コンヌの”Brisure”とはどういう意味かと置き換えれば同じことができる
(勝利宣言の証明おわりw)

425:現代数学の系譜11 ガロア理論を読む
12/04/26 07:26:05.02
>>423
>因みに>>408は俺じゃない。

ああ、そうだね
失礼した

だが、>>304はあんただろ?
>>419-420と
>>304
「百歩いや千歩譲ってそれが対称性を表しているとして
可解でないガロア群をもつ方程式はどうなんだ?
その方程式のガロア群がその対称性を表しているって
どういう意味?」
の主張とは整合しないよ

426:132人目の素数さん
12/04/26 07:27:23.70
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/

427:現代数学の系譜11 ガロア理論を読む
12/04/26 07:30:59.80
>>424
補足

>いな、「可解でないガロア群をもつ方程式」こそがコンヌが紹介しようとしているガロア理論の対象ではないのか

正確には、可解と非可解をきちんと区別できるのがガロア理論だ。「可解でないガロア群をもつ方程式」も扱えると

428:132人目の素数さん
12/04/26 07:41:32.35
>>424
物理用語にかけたものとようやく理解したのは俺じゃない。

429:132人目の素数さん
12/04/26 07:46:04.87
とにかくコンヌが言ってることは>>239とほぼ同じこと。

430:猫vs運営 ◆MuKUnGPXAY
12/04/26 08:44:11.16
>>299
数日前に印刷しましたので、今読んでます。まあ『崩壊されるべき対象性がある』
という事を最初に認識したのが他ならぬガロアであったという事だと思いますが。




431:132人目の素数さん
12/04/26 08:50:00.81
>>419の訂正
この場合の対称性とは性質というより根の置換で不変なこと

432:132人目の素数さん
12/04/26 08:56:03.14
>>430
待ってました。
>>243からのやり取りに対してのご意見は?
>>243はガロア理論を素人に説明するのに対称性をもちだしてくる
輩にたいする皮肉でしょう?

433:猫vs運営 ◆MuKUnGPXAY
12/04/26 10:08:27.31
>>432
ソコまでスレを遡って全部読むのは大変なので今は何とも言えませんが、
私見を述べればまあ:
★★★『何故対称性が大事なのかというと、ソレは対象性が無い場合があるから』★★★
であって、そういう考え方をする(こういう考え方自体がガロアを起源
とするとすれば、ガロアの考え方は余りにも偉大過ぎる!)のであれば、
今となっては物理学でも化学でも、或いは生物学でもそういう見方が出
来るという指摘にも読めますけどね。

まあ対象性を重要視するのは数学では根幹(のひとつ)ですから。




434:432
12/04/26 10:39:17.01
>>432
フランス語に流暢な猫さんに聞いたのは
ものわかりの悪いスレ主を納得させる為であって、
俺自身は俺の見解に自信を持ってる。

435:432
12/04/26 10:44:44.72
>>433
遡って全部読む必要はないです。
>>243のコンヌの文章の意味を問題にしている。

436:132人目の素数さん
12/04/26 11:14:24.78
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/

437:現代数学の系譜11 ガロア理論を読む
12/04/26 21:14:07.31
>>428
>物理用語にかけたものとようやく理解したのは俺じゃない。

そうなん。失礼した。>>411は君じゃないと。分かった
数学スレはIDが出ないので不便だな
まあ、仏語なら”Brisure”が物理の”対称性の破れ”に使われるとしても
日本語では、君が最初に使った「破壊」(>>231 アランコンヌは・・ガロアを対称性の破壊者と呼んでいる)と、「破れ」とでは、物理用語にかけたものとは言えないよ

>>429
>とにかくコンヌが言ってることは>>239とほぼ同じこと。
(239より)
なんで対称性の破壊者と呼んだかわかるかな?
ガロアは論文の始めに対称群で不変となる式でなく
恒等置換以外の全ての置換で不変とならないもの
を定義してそれを議論の中心においた。
このことを指している。
コンヌだからこそ言える台詞。
そこらの二流の数学者じゃ群といったら対称性と
脊髄反射的に月並みな台詞を吐くのが関の山。
(引用おわり)

1.「なんで対称性の破壊者と呼んだかわかるかな?」の破壊ってのを破れに訂正したんだろ?
2.「対称性の破壊者と呼んだ」は、>>291「訂正:対称性の破壊者じゃなく対称性の破れだな」と間違いを認めたよ。おいらが一番問題にしたのはここだ
3.「ガロアは論文の始めに対称群で不変となる式でなく 恒等置換以外の全ての置換で不変とならないものを定義してそれを議論の中心においた」は正しい
 だが、「このことを指している。コンヌだからこそ言える台詞(=対称性の破壊者と呼んだ)」ってところが、正しくない
4.そして、「そこらの二流の数学者じゃ群といったら対称性と脊髄反射的に月並みな台詞を吐くのが関の山」 というけれど、
 コンヌも”2. Brisure de symetrie”という台詞を言った>>379。これは、Brisureの前にsymetrieありきだろ?
 そして、symetrieと群(Groupe)が、Brisure=une fonction auxiliaire (V)を通じて繋がり、3. Groupe de Galois>>403-404と繋がるんだ
 ならば、symetrie-群(Groupe)という脊髄反射でいいだろ

438:現代数学の系譜11 ガロア理論を読む
12/04/26 21:17:50.13
>>430
猫さん、乙です
ついに、猫さんを引っ張り出したか

猫さんを動かすとは、>>299ってだれ?

>数日前に印刷しましたので、今読んでます。

はあ
まあ、すごい人だね

439:現代数学の系譜11 ガロア理論を読む
12/04/26 21:41:26.46
>>433
>私見を述べればまあ:
>★★★『何故対称性が大事なのかというと、ソレは対象性が無い場合があるから』★★★
>であって、そういう考え方をする(こういう考え方自体がガロアを起源
>とするとすれば、ガロアの考え方は余りにも偉大過ぎる!)のであれば、
>今となっては物理学でも化学でも、或いは生物学でもそういう見方が出
>来るという指摘にも読めますけどね。
>
>まあ対象性を重要視するのは数学では根幹(のひとつ)ですから。

なるほど、一つの貴重な視点ですね
1.図形の対称性については、>>123あたりに書いたように、シンメトリー (英語: symmetry) ということばは、おそらく平面図形の対称性=(線対称と点対称)(古代ギリシャのころ)から始まったのだろうと
2.そして、対称式についての認識もガロア以前に、>>131-132 Viete、ジラール、ニュートン、ウェアリングやヴァンデルモンドなどが研究したと
3.で、ガロアは方程式の対称性(=拡大体の対称性でもある)を、群という代数構造にうつして、数学的に取り扱えるようにした
4.物理学でも化学でも、或いは生物学でも、対称性あるところ群論の応用ありと
5.「対称性を重要視するのは数学では根幹(のひとつ)」は完全同意。場合によれば、群で足りなければ、群もどき(=半群やモノイドなど)の代数構造を考える
それが、小生の個人的理解ですがね

440:現代数学の系譜11 ガロア理論を読む
12/04/26 21:46:54.52
>>434
>ものわかりの悪いスレ主を納得させる為であって、
>俺自身は俺の見解に自信を持ってる。

それは正しいな
猫さんは、フランス語流暢よりもその数学的見識に信頼がおける(数学科の学生のレベルを超えている)
”俺の見解に自信を持ってる”っていっても、それは信用できないな

441:現代数学の系譜11 ガロア理論を読む
12/04/26 21:59:32.62
>>440
補足

おいらの理解が不十分というのは当っている
数学科でガロア理論を学びたての理解不十分に毛の生えた程度だろう
このスレを始めたのは、自分の勉強のためでもある
>>1の”ガロアの論文が、どんなものか知りたくて、私もこの本を読もうとしました。
高名な数学者さえ理解出来なかった論文とは、一体何がどのように書かれているのか興味があったからです。すでにガロア理論を知っていたので、軽く考えていました。
が、ガロアの論文は解りにくいモノでした。現在の整理された数学書の書き方に慣れているためか、ガロアの論文を少し眺めてみて、弱気になってしまいました。”

を見て、ああ自分と同じだねと
だが、これが”ベストアンサーに選ばれた回答”かと
じゃ、不肖私がチャレンジしましょうと

442:現代数学の系譜11 ガロア理論を読む
12/04/26 22:27:35.13
>>441
補足の補足

昔は、ファンデルウェルデン 現代代数学 が定番だと言われたが、これは読まなかった
しかし、岩波の「高等代数学I」(秋月康夫・鈴木通夫)から始まって、ガロア本は何冊か読んだ
アルチンは、最近買った

「高等代数学I」の序文に秋月康夫が、アルチンの講義録にふれて内容を書き直したく思うなんてことを書いてあったような記憶が
数学については、自分は使う立場であって、作る立場でもなく勉強する立場でもない。学ぶのは、実用とエンタを兼ねたもの

最近、このスレを始めて、矢ケ部>>169を読み直してみたら、結構ガロアの原論文>>3に近い(ほぼそのまま)ガロア群の導入をしているんだと
ガロアの原論文が読めるようになったのは、ブルーバックス 「ガロアの理論」 中村亨>>3のおかげ

問題のコンヌの文La Pensee d'Evariste Galois et le Formalisme moderne >>236も、VからVによるもとの方程式の根の有理式を使ってガロア群を導入するところは原論文>>3そのまま
コンヌの文を理解するには、原論文>>3、倉田>>4、矢ケ部が助けになるだろう

443:現代数学の系譜11 ガロア理論を読む
12/04/26 22:55:49.07
>>443
補足の補足の補足

(239より)>>437
なんで対称性の破壊者と呼んだかわかるかな?
ガロアは論文の始めに対称群で不変となる式でなく
恒等置換以外の全ての置換で不変とならないもの
を定義してそれを議論の中心においた。
このことを指している。
コンヌだからこそ言える台詞。
そこらの二流の数学者じゃ群といったら対称性と
脊髄反射的に月並みな台詞を吐くのが関の山。
(引用おわり)

こんなのは、噴飯ものの解釈
1.足立 ガロア理論講義 URLリンク(www.nippyo.co.jp) >>69の 6.5「歴史覚書」P168-9に書いているように
「整理された現代理論がもとの理論のすべてを包括しているのではない上、感激性が薄まっており、生命の息吹というものが失われているのではないか」
2.倉田>>4 序論 「たとえばブルバキ『数学原論/代数4』はヴェイユの『代数幾何学の基礎』の序説としての「体の理論」であり、ガロア理論がもともと方程式論であった痕跡さえ抹殺されている」と
 (だから、>>2>>3>>4や矢ケ部>>169がある)
3.現代のアルチン>>95を底本とするガロア理論では、ガロア分解式を経由しない
4.それはコンヌも承知の上で、ガロアのオリジナルをコンヌ流にやや一般向けに噛み砕いて解説しただけであって(どうもこの文はガロア誕生200年にあたっての文らしい)
5.二流の数学者うんぬんの批判(ガロア分解式に触れないことへの批判)は、お門違い(現代流はガロア分解式を使わないだけのこと)

444:現代数学の系譜11 ガロア理論を読む
12/04/26 23:12:14.84
>>443
補足
> 3.現代のアルチン>>95を底本とするガロア理論では、ガロア分解式を経由しない

記憶では、ファンデルウェルデンでも、ガロア分解式は扱っていなかったと思う
倉田>>4 序論や足立>>69の 6.5「歴史覚書」によれば、デデキントが体の自己同型写像を使ったとあるので、ここでガロア分解式を使わなくなったのかも

体論と群論の組み合わせ
代数構造のモデル

その方が、現代数学に結びつく発展性があるのは確か
しかし、生命の息吹というものが失われているのではないか

ガロアオリジナルに戻って
もっと直感的に、あるいはガロアの見ていた原風景を共感しようというのが、このスレのもう一つの趣旨でもある

URLリンク(www.kyoto-u.com)
kyoto-u.com - トピック - 【ε】数学の勉強法【δ】

445:猫vs運営 ◆MuKUnGPXAY
12/04/26 23:15:55.88
>>439
I do have a small addition that the structure group of a vector bundle
or a fiber bundle could/should also be understood as an object which
describes the symmetry and/or the order of "how those expected symmetries
are broken".

--neko--


446:132人目の素数さん
12/04/27 01:16:19.72
>>442
わかった気になってるだけじゃないの?w

447:132人目の素数さん
12/04/27 01:31:33.34
          __ノ)-'´ ̄ ̄`ー- 、_
        , '´  _. -‐'''"二ニニ=-`ヽ、
      /   /:::::; -‐''"        `ーノ
     /   /:::::/           \
     /    /::::::/          | | |  |
     |   |:::::/ /     |  | | | |  |
      |   |::/ / / |  | ||  | | ,ハ .| ,ハ|
      |   |/ / / /| ,ハノ| /|ノレ,ニ|ル' 
     |   |  | / / レ',二、レ′ ,ィイ|゙/   私は只の数ヲタなんかとは付き合わないわ。
.     |   \ ∠イ  ,イイ|    ,`-' |      頭が良くて数学が出来てかっこいい人。それが必要条件よ。
     |     l^,人|  ` `-'     ゝ  |        さらに Ann.of Math に論文書けば十分条件にもなるわよ。
      |      ` -'\       ー'  人          一番嫌いなのは論文数を増やすためにくだらない論文を書いて
    |        /(l     __/  ヽ、           良い論文の出版を遅らせるお馬鹿な人。
     |       (:::::`‐-、__  |::::`、     ヒニニヽ、         あなたの論文が Ann of Math に accept される確率は?
    |      / `‐-、::::::::::`‐-、::::\   /,ニニ、\            それとも最近は Inv. Math. の方が上かしら?
   |      |::::::::::::::::::|` -、:::::::,ヘ ̄|'、  ヒニ二、 \
.   |      /::::::::::::::::::|::::::::\/:::O`、::\   | '、   \
   |      /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ  ヽ、  |
  |      |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、  /:\__/‐、
  |      |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
   |     /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
   |    |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
    |   /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch