12/04/17 05:44:00.05
>>99
補足
URLリンク(ja.wikipedia.org)
ガロア圏(Galois category)とは古典ガロア理論が展開される、いくつかの公理を満たす圏である。
元来古典ガロア理論および位相幾何学における基本群の理論の類似点が指摘されていたが、アレクサンドル・グロタンディークがガロア理論の成り立つ公理系を明言し、一般的なガロア圏の理論を構成した。
古典ガロア理論および基本群の理論はこの理論の基本的な例になる。
この理論はしばしばグロタンディークのガロア理論と呼ばれる。
定義 [編集]Cを圏、FをCから有限集合の圏(Sets)への共変関手とし、次の公理を満たしているときCをガロア圏とよぶ。
Cは終対象を持ち、C内である対象上の2つの対象のファイバー積が存在する。
Cは有限和が存在する。とりわけ始対象を持つ。
任意の射u:X→Yはs:X→Zおよびt:Z→Yと一意に分解でき、sは全射、tは単射とできる。
Fは左完全である。
Fは有限和と可換である。Fは全射を全射に移す。および群による商と可換F(X/G)=F(X)/G。
C内の射u:X→Yに対しF(u)が同型ならばuも同型である。
このときガロア圏の上で有限群の射影極限である位相群πが構成され、圏Cとπが連続に作用する有限集合の圏C(π)との同値が証明される。
その他の話題 [編集]知られているすべてのガロア理論がガロア圏の言葉で表現できるわけではない。微分体のガロア理論であるピカール・ヴェシオ理論はガロア圏上では展開できない。それらのためにグロタンディークによる淡中圏の理論が構成されている。
参考文献 [編集]Alexandre Grothendieck, SGA1
101:132人目の素数さん
12/04/17 14:05:41.49
99, 100
Grothendieck のGalois理論については既にKummerが
彼のスレで展開すると予告している。しかもこのスレ主がそれに言及する前に。
102:132人目の素数さん
12/04/17 17:33:18.33
41
そこで使っている対称性の意味をきちんと説明しないと
隠れた対称性という言葉に酔ってるように見える。
はっきり言ってイミフ
103:132人目の素数さん
12/04/17 17:38:43.97
ここのスレ主は数学ミーハーだな
数学の内容より数学者のエピソードに関心あるようだ
かっこよさげな言葉に酔ってわかった気になってるし
104:132人目の素数さん
12/04/17 20:52:27.03
「複素数の広がり」のPDFがなかなか面白いよ
URLリンク(nogpc4.ms.u-tokyo.ac.jp)
野口潤次郎の電網掲示板
(3) 平成21年(2009)10月数理科学研究科公開講座「解析学の広がり」での講演、 「複素数の広がり」
URLリンク(nogpc4.ms.u-tokyo.ac.jp)
105:132人目の素数さん
12/04/17 21:05:18.44
>>101-103
乙です。この板はIDが出ないのではっきりしないが、同一人物と見た
>>101
>Grothendieck のGalois理論については既にKummerが
>彼のスレで展開すると予告している。しかもこのスレ主がそれに言及する前に。
Kummer氏は馬力あるからね
だが、おいらはスタイルが違う
というか、ここでは基本的にアスキー文字ベースなので、数学の添え字も使えないし、本格的数学理論を展開するのは難しいと思うんだ
なので、どこかに落ちている文献や関連サイトを紹介するスタイルにしているんだ
>>102
確かにご指摘は当っていると思うよ
但し、”隠れた対称性という言葉”という言葉は、各人各様にイメージしてもらえば良いと思うんだ
梅村 浩がどういう説明されているか>>40に書かれていること以上は分からない
が、なんにせよ何かの本なりでガロア理論を勉強してもらって、各人なりの理解をすれば良いこと。その手がかり程度に考えている
>>103
おいらは、ミーハーですよ、数学抜きので結構ですよ
数学は使う方で作る方じゃない
あくまで外野の人間です
数学はエンタです。>>1のベストアンサーを超えて、ガロア原論文を読んでやろうじゃないのと。それがこのスレ1からの主題で。それもあくまでエンタです
106:132人目の素数さん
12/04/17 21:10:49.02
>>105
訂正(二階述語論理みたいになってしまった・・・
URLリンク(ja.wikipedia.org) )
但し、”隠れた対称性という言葉”という言葉は、各人各様にイメージしてもらえば良いと思うんだ
↓
但し、”隠れた対称性という言葉”は、各人各様にイメージしてもらえば良いと思うんだ
107:132人目の素数さん
12/04/17 21:23:42.12
>>105
>数学はエンタです。>>1のベストアンサーを超えて、ガロア原論文を読んでやろうじゃないのと。それがこのスレ1からの主題で。それもあくまでエンタです
補足
主題は、個人的には終わっているんだ、>>85に書いたように
じゃ、いま何しているというと、スレのメンテです
何か”age”で書いていないとスレが沈んで行くので、それではスレ主としては面白くないし
書くことが自分の勉強になるし
このスレが自分の情報の集約にもなる
面白いサイトを見つけて紹介すると、記録に残るし
そんなことをぼちぼち気の向くままに続けますよ
108:132人目の素数さん
12/04/17 21:48:05.24
105
イメージするにも言ってる意味が分からない
隠れた対称性って何なの?
109:132人目の素数さん
12/04/17 22:00:22.79
>>108
乙
まずは>>40の梅村 浩先生のリンクを辿って、そのページを直接覗いてきな
で、そこに書いてあることを3回ほど読んでみな
その後、ガロア本を一冊読みな
それでも分からなければ、再度質問しな。但し、質問のときにどのガロア本を読んで、どの部分が分からないかを聞け
110:132人目の素数さん
12/04/17 22:14:27.84
>>104 関連
URLリンク(nogpc4.ms.u-tokyo.ac.jp)
層とコホモロジー 野口潤次郎 July 14, 2010
次の定理はよく“岡の連接定理” と呼ばれるが,本書ではこれを岡の第一連接定理と呼ぶ.この
定理の意味あるいは意義を一言二言で述べることは不可能であろう.ドイツ複素解析学の代表格
であるH. グラウエルトの朋友R. レンメルトは,1994 年著作の数学百科辞典[Springer] の中で次のように述べている:
It is no exaggeration to claim that Oka's theorem became a landmark in the development of function theory of several complex variables.
定理1.2.4. (岡の第一連接定理,1948)OΩ は,連接層である.
1.2.2 連接層について. 岡の一連の成果について,タイヒミューラーモジュライ理論で有名
なL. ベアース(Bers) は,ニューヨーク大学クーラン数理科学研究所(米国ニューヨーク市)での
多変数関数論講義録“Introduction to Several Complex Variables” (1964) の序を次の文で閉じている.
Every account of the theory of several complex variables is largely a report on the ideas of Oka. This one is no exception.
L. ベアースは,多変数関数論・多変数複素解析学を専門とする数学者というわけではないので,その意味でここには第三者的な客観的な評価が在ると言うことができるであろう.
その岡の仕事の中で,大きな到達点を与えるのが論文VII で,そこで岡の第一連接定理1.2.4が初めて証明された.
岡の第一連接定理1.2.4 の証明は,それを読むたびにその見事さに感嘆する.既に引用したR.レンメルトの記述を繰り返すことにはなるが,1950 年以降の多変数関数論あるいは多変数複素解
析学の発展は,ひとえに岡の第一連接定理1.2.4 にかかっていたと言って過言ではないであろう.
この定理により第一論文Oka I 以来用いてきた「岡の上空移行の原理」,そしてそれによるクザン問題の解決等々の問題が自然に解消してしまったのである.内容的には,本書でこれから五章ま
でに述べる結果である.視野的にはレビ問題(ハルトークスの逆問題)もその中に含まれていた.
それほどに,この「岡の第一連接定理」の含む処は深かったのである.
111:132人目の素数さん
12/04/17 22:40:04.54
<=( ´∀`)
( ) 朝鮮人は宇宙一ニダ
| | |
〈_フ__フ
Λ_Λ
< ;`Д´> あ…
( )ポロ
| | | ヽヽ
(__フ_フ =( ´∀`)
朝鮮人だらけの東京のテレビ局が日夜流す、デマや歪曲に騙されないようにしましょう。
112:132人目の素数さん
12/04/17 22:51:02.38
109
あんたがここでその言葉をしつこく何度も書いてるんだから
自分の言葉で説明しなさい。他人の言葉に頼りなさんな。
113:132人目の素数さん
12/04/18 00:19:40.66
>>112
わけのわらかんことを
誰に向かって何を説明するんだ?
あんたにかい?
もともとの起源は>>40だと最初からことわっている
それは、>>40にもあるとおり前スレからだ
そして、>>41にあるように
”この視点が気に入った
「隠れた対称性」というキーワードが気に入った!”
と
つまりは、「隠れた対称性」というキーワードの意味は>>40の通り
それが、”気に入った”は自分の感性の話で、説明不要だろうさ
114:132人目の素数さん
12/04/18 00:35:05.74
ガロア本も読んだことのない人間から
”イメージするにも言ってる意味が分からない
隠れた対称性って何なの?”>>108といわれても、説明する気にはならなんぜ
「いや、自分は数学の専門家でおまえの理解を試したい」というなら、別の話をしなよ
「隠れた対称性」なんて梅村 浩先生の言葉を借りずにさ
因みに、>>40で最初から要点を引用しているように
”彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。
(2)ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。
方程式の場合、目のつけどころであるカナメの部分がガロア群である。ヒヨコのお尻と違って、方程式の対称性であるガロア群は隠れているので、発見するのが難しいのである。”
と明確に梅村 浩先生は書いている
ガロア本の1冊でも読めば、梅村 浩先生の書いていることは理解できるだろうし、ガロア本も読んだことのない人間には理解できなくて当然だろう
補足:”彼らはガロア理論を発見した”と主語が複数形になっているのは、直前にある定理が”定理[ガロア、アーベル]”とされているからで、ガロア、アーベルを指すのだろう。
レスの次数制限があるから、全文は引用できないので抜粋引用したのだ
115:132人目の素数さん
12/04/18 00:48:41.41
>>105
補足
猫さんやKummer氏は数学科出身みたいだから、おいらより理解は深いだろう
Grothendieckの到達した神の領域までの理解はとてもできない。猫さんほどの高みには到達できない
だが、富士登山でも5合目まではバスがあるという
そのうち、Grothendieck山に一般人でも登ることのできるルートも見つかるかも知れないな
URLリンク(ja.wikipedia.org)
富士山は日本最高峰であるため、「日本最高峰」という表面的な観念・言葉に惹かれて、
(そもそも登山経験もなく、標高が高い山に登山することがどのようなリスクを伴うことなのか知らぬまま)安易に登ろうと試みる人も多い(それが遭難の多さにつながっている。後述)。
また遠くから見た富士山の姿に惹かれて、富士山の山中に入っても美しいだろう、などと空想して引き寄せられる人もいる。
だが、登山者が登山の途中に登山道から見る富士山は、遠方から見る美しいフォルムの富士山とは全然異なっている。
そこは火山灰と溶岩の荒れ果てた殺伐とした世界である。「富士山は遠くから眺めるための山であり、登るための山ではない」といったことも言われることがある。
自動車等でたどりつける主要な登山口の標高が(5合目あたりと)すでにかなりの高度にあり、そこから歩きはじめる場合、残りの標高差は富士山自体の標高の約半分程度に減っている。
富士山登山では毎年多数の人々が遭難しており、毎年のように幾人もの死者がでている。
例えば、2011年は7月1日の開山から8月18日までの約1ヵ月半の間に34件(34人)の遭難があった[1]。ここ数年増加傾向にあり、2005年の17人から3倍以上になった[1]。
116:132人目の素数さん
12/04/18 06:01:21.29
>>113-114
補足
>「隠れた対称性」というキーワードが気に入った!”
数学的には、>>40梅村 浩先生の書いている「この対称性はガロア群*3で記述される」で尽きている
だが人間の理解というものは、それだけで終わりじゃないと思うんだ
”隠れた”という数学的には定義されていない自然言語を用いた感性の説明
それは数学を超えたもの(メタ数学とは少し違う)
URLリンク(ja.wikipedia.org)
広義には、超数学(メタ数学)などと呼ばれる枠組みにしたがって公理と推論規則が定められた体系一般を指す。
現代的な数学においては、公理的に定義される抽象的な構造を、数理論理学を共通の枠組みとして用いて探究する。
URLリンク(okwave.jp)
メタ数学・超数学ってなんですか?2004-12-21
最近、海外のSF小説をよく読むのですが、その中に「メタ数学」「超数学」などと言う言葉をよく見ます。
ANo.3
物事の定義の決め方には注意が必要です。こういう定義の仕方について決める学問がメタ物理(本当はそんな言葉ないですが)です。
数学でも似たような状況があります。
a+b=b+a
を証明しろって言われても、「何を前提として証明したらいいか」わからないでしょう。「そもそも足し算とは何か」をまず定義しなくちゃいけません。
「その足し算とは何か」を定義する際に、「足し算とは、ある一定の規則を持つ演算規則であり・・・」などと定義していくときに、「交換則」を前提として作ってしまえば、「a+b=b+aは定義だから証明の必要なし」ということになります。
しかし「足し算とは何か」を定義する際に「交換則を定義の中に組み込んでしまう」べきか、はたまた「足し算について別の定義をしておいて、交換則を証明する」ようにすればいいのか。
これまた議論が必要です。
こういった議論をするのがメタ数学です。
持っている本にこんな例えが載っていました。
野球で「両チームともバッターが下手くそだから、3アウトチェンジをやめて、6アウトチェンジにしよう、という議論になったとする。これがメタ野球である」
面白い例えだと思うのですが、いかがでしょう。
117:132人目の素数さん
12/04/18 06:17:38.35
>>116
つづき
>”隠れた”という数学的には定義されていない自然言語を用いた感性の説明
それは、ランドスケープ>>51であり、ナスカの地上絵、遠目の富士>>52だ
「隠れた対称性」というのが、梅村 浩先生のガロア理論に対する心象風景だろうと
URLリンク(ja.wikipedia.org)
心象風景
心の中に思い描いたり、浮かんだり、刻み込まれている風景。現実にはありえない風景であることもある。
(引用おわり)
登山者が登山の途中に登山道から見る富士山は、火山灰と溶岩の荒れ果てた殺伐とした世界>>115
だが、それを遠方から見る美しいフォルムの富士山という心象風景にまで消化できてはじめてガロア理論を理解したといえるのではないか
梅村 浩先生の心象風景を、「隠れた対称性」という言葉で表現された。それが気に入った>>41
その意味を説明しろといわれても、最初に書いたとおりだよと
118:132人目の素数さん
12/04/18 07:03:00.78
だから対称性ってなによ?
あんた意味分かってるの?
梅村も説明してないじゃん
119:132人目の素数さん
12/04/18 07:08:45.60
他人に満足に説明出来ないことをさも高尚なことのように
得々として書く。いかがわしいカルト宗教の教義みたいだなw
120:132人目の素数さん
12/04/18 07:15:09.35
113
113
誰に説明ってここを読んでるまたはこれから読む人にだよ。
対称性ってなによ?
意味不明じゃん
梅村も対象性の意味を書いてないだろ
121:132人目の素数さん
12/04/18 21:31:50.67
>>118-120
面白いやつだな
自分が理解できないからって、自分のレベルで計るなよ
>誰に説明ってここを読んでるまたはこれから読む人にだよ。
まあ、言いたかったのは、
1)相手のレベルに合わせた説明が必要だ
2)相手がどこまで理解していて何が分からないのかに合わせた説明が必要だ
と
だから、誰に対してだと聞いた
だが、答えないところを見ると、自分は分かっているつもりなんだろうね
しかし、小学生中学生に微分積分を説明するのも難しいので、相手のレベルを設定しよう
そうだな、大学入試に数学を入れて合格できるレベル。大学の難易度では、平均より上。数学オリンピック出場レベルのスーパー高校生は含める
さらに、このスレで分からないことは、書店かネット購買かあるいは図書館などで自学できるものとする
122:132人目の素数さん
12/04/18 21:39:57.23
>>120
>対称性ってなによ?
ここからはじめよう
URLリンク(ja.wikipedia.org)
対称性(たいしょうせい)、又はシンメトリー (英語: symmetry) は、ある変換に関して不変である性質である。
目次
1 空間の対称性
1.1 並進対称性
1.2 回転対称性
1.3 鏡像対称性
1.4 結晶
2 式の対称性
式の文字を入れ替えても元の式と変わらない式を対称式という。 例えば x^2+xy+y^2 は x と y の入れ替えについて不変な対称式である。
(引用おわり)
123:132人目の素数さん
12/04/18 21:50:55.71
>>122 つづき
人類の対称性への認識は図形からだろう
上記では、空間の対称性から始まっているが、本当は平面図形の対称性=(線対称と点対称)から始まったのだろう
そうして、千年以上後に、高次方程式の解法から対称式が研究されるようになった
ニュートン多項式を基本対称式で表せというような問題は、高校数学でよく扱われる
URLリンク(ja.wikipedia.org)
2.2 基本対称式
2.3 ニュートン多項式
3 対称式の基本定理
3.1 ウェアリングによる方法
3.2 コーシーによる方法
3.3 斉重対称式
3.4 基本対称式の代数的独立性
(引用おわり)
下記は、英語版の記事の目次だが、ずいぶん構成が違う
URLリンク(en.wikipedia.org)
2 Applications
2.1 Galois theory
3 Relation with the roots of a monic univariate polynomial
4 Special kinds of symmetric polynomials
4.1 Elementary symmetric polynomials
4.2 Monomial symmetric polynomials
4.3 Power-sum symmetric polynomials
4.4 Complete homogeneous symmetric polynomials
4.5 Schur polynomials
5 Symmetric polynomials in algebra
6 Alternating polynomials
(引用おわり)
124:132人目の素数さん
12/04/18 21:55:56.07
>>123 つづき
ふむふむ、英語版では”対称式の基本定理”などは別にリンクを張ってあるね
URLリンク(en.wikipedia.org)
4 The fundamental theorem of symmetric polynomials
4.1 Proof sketch
4.2 An alternative proof
4.3 A Self-Contained Algorithmic Proof
125:132人目の素数さん
12/04/18 22:00:38.85
>>124
図形の対称性から進んで、人類は式の対称性を考えるようになった
例えば x^2+xy+y^2 >>122は、x と y の入れ替えについて対称だが、視覚的にも左右対称に近い
そうして人類は、対称式の基本定理に到達したのだった>>123
126:132人目の素数さん
12/04/18 22:14:35.06
このスレには運営は現れないな
127:132人目の素数さん
12/04/18 22:35:49.79
何でレスが名無し?
おまえ、おかしい
128:現代数学の系譜11 ガロア理論を読む
12/04/18 22:42:59.81
>>127
おお、ご指摘ありがとう
コテが消えていた
失礼しました
129:現代数学の系譜11 ガロア理論を読む
12/04/18 22:49:07.63
>>125 つづき
式の対称性とは、例えばx と y の入れ替えについてってこと
入れ替えは置換ってことで、置換群に繋がって行く
URLリンク(ja.wikipedia.org)
置換
詳細は「対称群」を参照
有限集合 X の要素全てを落とさず重複無く用いて得られる順列は、特に置換と呼ばれる。
つまり、置換は X 上の(X 自身への)全単射であり、写像の合成に関して置換群 (permutation group) と呼ばれる群を与える代数学的な対象となる。
URLリンク(ja.wikipedia.org)
移動: 案内, 検索
数学における対称群(たいしょうぐん、symmetric group)とは、「ものを並べ替える」という操作を元とする群である。
この場合の「ものを並べ替える」操作のことを置換(ちかん、permutation)という。
数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてをしらべる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。
置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、permutation group)[1]と呼ばれる。
対称群 SX が空間 X の変換群として与えられているとき、X の元 x の置換は Stab(x) = {σ ∈ SX | σx = x} で与えられる SX の部分群のぶんだけ潰れているが、
これは X のなかに x と「同じ」元が複数含まれている場合に対応しており、X の中でこれらを区別することができれば X の元の置換から対称群 SX が回復される。
130:132人目の素数さん
12/04/18 22:51:39.10
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
131:現代数学の系譜11 ガロア理論を読む
12/04/19 05:35:25.30
>>129 つづき
もう一つ重要なことがある。根と係数の関係だ
URLリンク(ja.wikipedia.org)
根と係数の関係は、多項式の根と係数との間に成立する関係式を表した不変式論の定理である。
えーと、英語版だと
URLリンク(en.wikipedia.org)
HistoryAs reflected in the name, these formulas were discovered by the 16th century French mathematician Francois Viete, for the case of positive roots.
In the opinion of the 18th century British mathematician Charles Hutton, as quoted in (Funkhouser), the general principle (not only for positive real roots) was first understood by the 17th century French mathematician Albert Girard; Hutton writes:
...[Girard was] the first person who understood the general doctrine of the formation of the coefficients of the powers from the sum of the roots and their products.
He was the first who discovered the rules for summing the powers of the roots of any equation.
(引用おわり)
方程式の係数は、根の基本対称式で表されるという
根と係数の関係は、高校数学で学習するはず
132:現代数学の系譜11 ガロア理論を読む
12/04/19 05:59:26.41
>>131 つづき
根と係数の関係は、>>123で引用した対称式にこんな記述があったね
URLリンク(ja.wikipedia.org)
アルベール・ジラールは、1629年に「代数学の新しい発明」(Invention Nouvelle en l'Algebre) おいて、n 次の代数方程式の根と係数の関係を発見した。
代数方程式の係数は n 個の根の基本対称式と呼ばれる対称式により書かれるというこの関係は、一般の次数の代数方程式の構造を調べるための重要な足掛かりの一つとなった。
さらに、ジラールは、これらの関係を用いて虚数の有用性を説いた。
18世紀の後半になると、任意の対称式は基本対称式によって書くことができる事が、ウェアリングやヴァンデルモンドらによって示され、ラグランジュによる、代数方程式の根の置換の研究へとつながっていった。
(引用おわり)
前置きが長くなって、話が見えにくくなっているから、少し本題へ戻ろう
「梅村も対象性の意味を書いてないだろ」>>120という
が、梅村 浩先生は、>>40で
「(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。」と書かれている
いままでの引用と説明で、感のいい人は下記のつながりが見えてきたろう
対称性
↓
対称性と は、ある変換に関して不変である性質である>>122
↓
方程式の根と係数の関係
代数方程式の係数は n 個の根の基本対称式と呼ばれる対称式により書かれる(上記)
↓
対称式の基本定理
任意の対称式は、基本対称式によって表される
↓
根の対称式:根の置換という操作(変換)で不変である性質
↓
置換群(対称群)>>129
↓
代数方程式のガロア群
133:現代数学の系譜11 ガロア理論を読む
12/04/19 06:12:33.47
>>132 つづき
最後のガロア群は、>>121以降では出てきていないので、下記を引用する
URLリンク(ja.wikipedia.org)
ガロア理論(ガロア-りろん、Galois theory)は、基本的には代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する代数学の理論をさす。
1830年代におけるエヴァリスト・ガロアによる代数方程式のべき根による可解性などの研究に端を発しているためこの名前がつけられている。
実際にガロアは、方程式の研究において未知であった群や体の考えを用いていた。現代の代数学はこの理論から始まった。
ガロア理論によれば、"ガロア拡大" と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。
p を形式的に根の一次式の積として表す(実際、これは K を含む代数閉体上で可能になる)ことで p の係数は根の基本対称式であること(根と係数の関係)が分かる。
したがって拡大体 L の自己同型 σ が根の入れ替えを引き起こしているときには σ の下で p の係数たちや、より一般に K の元は変化しないことがわかる。
一方、K の元を不変にするような L の自己同型は p の根を入れ替えている。
このような変換すべての集まり Gal(L/K) は変換の合成という二項演算について群の構造を持っており、L の K 上のガロア群または p のガロア群とよばれる。
(引用おわり)
一気に説明が難しくなったが、仕方がない
これから、ぼちぼち解説して行こう
134:現代数学の系譜11 ガロア理論を読む
12/04/20 05:36:59.03
>>133 つづき
ガロア群について、133を読んでも分からないだろう
普通ガロア本では、ガロア群の定義あるいは説明に至るまで100ページほどを要する
それを圧縮して書かれているので、分かりにくい
そこで、このスレのスローガンでもあるまずは先に進むという方式を取る>>90
『Backward deduction』類似のトップダウンアプローチに近いのではないかと
(参考)
前スレ303より、”例えばグロタンが凄いのは『Backward deduction』ですよね。” by 猫さん
スレリンク(math板:303番)
『Backward deduction』の意味が不明確だが、自分なりに解釈すると、トップダウンアプローチだと
( URLリンク(dictionary.goo.ne.jp)
goo辞書より「推論」「演繹」という意味)
つまり、普通は定義、公理から定理を積み上げて、最後の定理の証明に至る
しかし、グロタン師はヴェイユ予想から逆に必要な数学を逆算してエタール圏(下記)などを作り上げたと
URLリンク(ja.wikipedia.org)
グロタンディーク位相
代数幾何学のヴュイユ予想を解決するためにアレクサンドル・グロタンディークがエタール・コホモロジーを定義する際に導入された。
135:現代数学の系譜11 ガロア理論を読む
12/04/20 05:51:21.87
>>134 つづき
数学は、定義、公理から定理を積み上げて、最後の定理の証明に至る
それが普通だ。だから、数学本を最初から読んで行く。途中が分からないと、先へ行ってさらに分からなくなると思いがちだ
だが、定義、公理から定理を積み上げるというのは、ジグソーパズルの各ピースを組み上げてゆくことに例えられるだろう>>35
ジグソーパズルの完成図が分かっていて、各ピースを組み上げてゆくなら理解は早い>>48
トップダウンアプローチは、ソフトウエアー開発でよく使われる言葉で、全体像をはっきりさせて(というか全体像から逆に詳細設計に落として)ソフトウエアー開発を行う
しかし、最近ではボトムアップ設計を組み合わせて設計する手法が一般的になっていると言われる
数学でも、ボトムアップ型とトップダウンアプローチの組み合わせが良いのではないかと
数学で、途中が分からないと、先へ行ってさらに分からなくなると思い込んでいる人がいるので付言した
URLリンク(www.comp.tmu.ac.jp)
トップダウンとボトムアップ Tetsuya Shintani 2011-04-05
(抜粋)
トップダウンアプローチは,プロジェクトの全体的な計画を把握して,目的をはっきりさせ,全ての方向性が決まってからプログラムの詳細を書き始める設計手法と言っていいと思います.
ボトムアップ型は実行できるモジュール(機能)を組み合わせてプログラムを構築していきます.
しかし,プロジェクト全体の流れ(トップダウン的なアプローチ)を把握しないと,そのモジュールが必要とされる機能やモジュール同士の連携がうまく設計できない場合もありえます.
そのため,最近ではトップダウン設計とボトムアップ設計を組み合わせて設計する手法が一般的になっていると言われています.
136:現代数学の系譜11 ガロア理論を読む
12/04/20 06:00:13.42
>>134 つづき
ガロア群とは何か?
一般の5次方程式に限って言えば、
5次方程式f(x)=x^5+ax^4+bx^3+cx^2+dx+e の5つ根α、β、γ、δ、ε>>94
(α、β、γ、δ、ε)の置換からなる5次の対称群
おっと・・・、いま検索で引っ掛かった下記ページが面白いね
URLリンク(ja.wikipedia.org)
五次方程式
目次
1 概要
2 解の公式
2.1 エルミートによる解法
2.2 ブリング-ジェラードの標準形
2.3 レベル5のモジュラー方程式
2.4 解の構成
2.5 限定的な代数的解法
2.6 具体例
外部リンク [編集]Quintic Equation Calculator(英語、xの係数を入力すると解を算出してくれる)
URLリンク(www.freewebs.com)
137:現代数学の系譜11 ガロア理論を読む
12/04/20 06:04:58.98
>>136 つづき
英語版ではどうだろうか?
URLリンク(en.wikipedia.org)
Contents
1 Finding roots of a quintic equation
1.1 Solvable quintics
1.2 Examples of solvable quintics
2 Beyond radicals
3 See also
4 References
5 External links
英語版のExternal linksがなかなか面白いんだ
External linksQuintic Equation Solver
Mathworld - Quintic Equation ? more details on methods for solving Quintics.
Solving the Quintic with Mathematica ? poster on Quintic solutions
[1] ? Klein's book is available online
Solving Solvable Quintics ? a method for solving solvable quintics due to David S. Dummit.
Polynomial Transformations of Tschirnhaus, Bring and Jerrard - a recent update of Tschirnhaus' paper by Victor S. Adamchik & David J. Jeffrey
A method for removing all intermediate terms from a given equation - a recent English translation of Tschirnhaus' 1683 paper.
138:現代数学の系譜11 ガロア理論を読む
12/04/20 06:12:36.88
>>136 つづき
脱線したが、
一般の5次方程式に限って言えば、ガロア群が5つ根(α、β、γ、δ、ε)の置換からなる5次の対称群S5になるという全体像をまず知識として頭に入れろと
ここで、ガロア群→対称群S5から対称性へと繋がるのだ(>>132の矢印と逆方向)
なぜ5次の対称群S5?
それは、これからぼちぼち解説して行こう
普通ガロア本では、ガロア群の定義あるいは説明に至るまで100ページほどを要するところだから
139:現代数学の系譜11 ガロア理論を読む
12/04/20 06:45:01.59
>>134 訂正
goo辞書より「推論」「演繹」という意味)
↓
deduction:goo辞書より「推論」「演繹」という意味)
140:132人目の素数さん
12/04/20 06:58:33.49
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
141:132人目の素数さん
12/04/20 07:02:01.67
一般方程式のガロア群は対称群だが普通の方程式の場合は
対称群とは限らないだろ。
142:132人目の素数さん
12/04/20 07:13:08.77
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
143:132人目の素数さん
12/04/20 07:13:54.32
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
144:132人目の素数さん
12/04/20 07:15:05.75
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
145:132人目の素数さん
12/04/20 07:22:33.18
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
146:132人目の素数さん
12/04/20 08:22:30.94
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
147:132人目の素数さん
12/04/20 08:25:23.80
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
148:132人目の素数さん
12/04/20 08:26:17.45
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
149:132人目の素数さん
12/04/20 08:31:12.64
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
150:132人目の素数さん
12/04/20 08:45:43.32
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
151:132人目の素数さん
12/04/20 15:04:19.66
僅かながら選挙の匂いが漂ってまいりました。
_____________
|| |
|| ちょっと待て . . .|
|| . |
|| その民主党員 . |
|l -―- |
'"´: : : : : : : : :`丶 . 帰化鮮人|
':.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:ヽ______|
/.::.::./.::.::.::.:j.::.::.:|.:ム;ヘ.::.:ハ ̄ ̄ ̄ ̄ ̄
,'.::.::.::i.::.::.::.:/|.::.:: l/ `|.::./7
:.::.::.::j:|.:!.:_:/´|_.::_」 くV <|
|:ハ_::_ル'´ /⌒丶 j//V|
|:::::::::i x==ミ _ 〈/.:|.::|
|:::::::::i:'" ´ ゙̄Y}!.::.l.::|
八:::::::圦 、' _ "/_ノ.::,'.::j
/⌒ヽ::::ト{\ _,.ィ__/.::/l:./
/ 丶∧::| 丶 `ニ´ 彡// :厶|∧
{/ 丶ヘ| ノ / |:/ (こ ハ
/ }ヽ、 ∧ / 'x┴〈 }_ゝ、
/ \∨ ∨ / ニⅣ } )
〈 _ノ∧ 厶=7 ,.-、) 人ノ
}⌒ヽ `<__,>イ |__ノ| |/∨
/ ヘ / │ 丶ノ.| | \
/ ヽ \__/ | | ノ
/ >'"⌒\ 〃⌒\| ト、__/
152:現代数学の系譜11 ガロア理論を読む
12/04/20 23:45:52.30
>>141
>一般方程式のガロア群は対称群だが普通の方程式の場合は
>対称群とは限らないだろ。
"いい質問ですね"
倉田>>4によるが、ガロア群の捉え方に二つある
1.ガロアリゾルベントV>>15を作って、Vを用いて方程式の根をVの有理式で表す。Vの共役根をV'、V''、V'''・・・として、VをV'、V''、V'''・・・で置き換えることで根の置換を生じせしめる
2.後世の捉え方は、体の拡大として、k-同型写像のなす群を考える(倉田本>>4 P129)
こう言っても分からないだろうから、これからぼちぼち解説して行こう
153:132人目の素数さん
12/04/20 23:46:45.28
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
154:132人目の素数さん
12/04/21 00:01:33.01
640 名前:名無しさん@12周年[] 投稿日:2012/02/18(土) 15:05:47.13 ID:sskgsjsc0 [2/2]
『平清盛』プロデューサー在日朝鮮人 磯智明(天皇制度廃止論者)のプロデュース作品
①『かんさほうじん (2008)』反体制・反社会
②『最後の戦犯 (2008)』反日・天皇制度廃止・反体制・反社会
③『リミット -刑事の現場2- (2009)』反体制・反社会
大河の画面が汚いのも、役者が大根なのも、衣装がぼろぼろなのも、役者の下品な立ち回りも、
画面が薄暗いのも、役者が汚いのも全ての原因は
NHKが汚れているから
史実うんぬんの話ではないのですよ。あの大河は役者、セット、演出等が、いまのNHK内部の汚れ具合を見事に反映しているのです。
薄汚れた空間内で繰り広げられる捏造・妄想(=今年の大河)は、反日・在日の脳内を表しているのだ。
155:現代数学の系譜11 ガロア理論を読む
12/04/21 07:43:16.33
>>152 つづき
> 2.後世の捉え方は、体の拡大として、k-同型写像のなす群を考える(倉田本>>4 P129)
ネット検索でいいサイトがヒットした
と言っても、前スレ114でも紹介した* 物理のかぎしっぽ -- 代数学
URLリンク(hooktail.org)
これは凄いね。例えば下記が目次でそれぞれ解説がある
ガロア理論入門 †
体の自己同型写像群(Joh著)
ガロア群の例(Joh著)
ガロア拡大とガロア群(Joh著)
ガロア理論の基本定理(Joh著)
対称式への応用(Joh著)
1のn乗根(Joh著)
作図できる正多角形(Joh著)
正五角形の作図(Joh著)
正十七角形の作図(Joh著)
代数方程式を代数的に解く試み(Joh著)
可解群について補足(Joh著)
ガロア群と可解群(Joh著)
累開冪拡大体の列(Joh著)
累開冪拡大体とガロア群の関係(Joh著)
ガロア理論と代数方程式(Joh著)
二次方程式(Joh著)
三次方程式(Joh著)
四次方程式(Joh著)
交換子群(Joh著)
五次方程式(Joh著)
156:132人目の素数さん
12/04/21 07:43:37.57
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
157:現代数学の系譜11 ガロア理論を読む
12/04/21 07:50:17.41
>>155 つづき
まずは、次の5つ
体の自己同型写像群(Joh著)
ガロア群の例(Joh著)
ガロア拡大とガロア群(Joh著)
ガロア理論の基本定理(Joh著)
対称式への応用(Joh著)
を読んでくれ
えーと「対称式への応用(Joh著)」の中に
ガロア群と方程式の解
方程式のガロア群
(抜粋)
体F上の方程式f(x)=0 の最小分解体をE とします.このとき,G(E/F) を 方程式f(x)=0のガロア群 と定義します.以後,方程式論の文脈で『方程式のガロア群』と出てきたら,係数体と最小分解体に対するガロア群だと解釈して下さい.
ここでもう一つ,役にたつ定理を紹介します.
(引用おわり)
辺りを熟読のこと
158:現代数学の系譜11 ガロア理論を読む
12/04/21 07:52:51.51
>>157 つづき
余談だが、いま気付いたが、物理のかぎしっぽの中に猫が住んでいる
世の中猫ずきの人はいるんだ
159:132人目の素数さん
12/04/21 07:55:57.25
ごたくはいいからあんたのいう隠れた対称性って何?
160:132人目の素数さん
12/04/21 07:58:46.79
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
161:現代数学の系譜11 ガロア理論を読む
12/04/21 08:02:16.98
>>157 つづき
まあ、それで>>152「一般方程式のガロア群は対称群だが普通の方程式の場合は対称群とは限らないだろ。」への回答の代用としよう
どの程度の説明を求めているか不明だし、相手のレベルも不明だ
加えて、このスレの容量も有限で、アスキー文字ベースで物理のかぎしっぽのような図も描けない
ならば、物理のかぎしっぽを見てもらって、理解できない部分を質問してもらうのが良いだろう
なお、質問にあたっては、
1.物理のかぎしっぽのどの部分に関することか
2.どこまで分かったのか
3.なにがどう理解できないのか(できれば、自分はこう解釈するというのを書いてもらうと話が早い)
4.自分の数学レベル(高校 or 大学) (高校生でも大学生向け専門書を読んでいるならそれを書いて貰えると話が早い)
を明確にすること(この限定は上記の>>152関連に限ることにする。あまり制限をしてもスレが窮屈だ)
162:132人目の素数さん
12/04/21 08:03:14.85
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
163:132人目の素数さん
12/04/21 08:07:20.49
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
164:132人目の素数さん
12/04/21 08:08:55.35
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
165:132人目の素数さん
12/04/21 08:10:08.49
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
166:132人目の素数さん
12/04/21 08:11:17.63
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
167:132人目の素数さん
12/04/21 08:12:03.63
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
168:132人目の素数さん
12/04/21 08:18:36.65
>>161
誤魔化すなよ。
説明になってない。
どの程度の説明ってガロア理論が理解できるやつ
が理解できる程度だよ。
普通の数学科の学生のレベル
あんた自分でも隠れた対称性が何かわかってないだろ。
分からなくていいんだよ。無意味な言葉なんだから。
169:現代数学の系譜11 ガロア理論を読む
12/04/21 08:31:39.23
>>152 つづき
> 1.ガロアリゾルベントV>>15を作って、Vを用いて方程式の根をVの有理式で表す。Vの共役根をV'、V''、V'''・・・として、VをV'、V''、V'''・・・で置き換えることで根の置換を生じせしめる
この話で一番分かりやすいのは、前々スレ198で紹介した
URLリンク(www.amazon.co.jp)
数III方式ガロアの理論―アイデアの変遷を追って [単行本] 矢ケ部 巌 (著) 出版社: 現代数学社 (1976/06)
第24章 方程式の群を導入する P417で
ガロアのもとのアイデアにそって、分かりやすく方程式のガロア群を導入している
つまり、
ガロアリゾルベントV>>15
V=Aa+Bb+Cc+・・・
a,b,c・・・は、(重根を持たない)で問題の方程式の根、A,B,C・・・は根の置換で異なる値をとる
↓
根の置換で異なる値V'、V''、V'''・・・を全て集めて
F(x)=(x-V)(x-V')(x-V'')(x-V''')・・・
を作る
F(x)の係数は、元の体(それが有理数体QならQに)((x-V)(x-V')(x-V'')(x-V''')・・・は置換で異なる値を集めたので根の置換で変わらない→対称式→根の基本対称式→根と係数の関係から元の体)
↓
一般の5次方程式ならF(x)は既約で、120次元の方程式
↓
V=Aa+Bb+Cc+・・を用いて
a,b,c・・・は、Vの有理式で表される
これをガロア論文>>3では、
a=φ(V),b=φ1(V),c=φ2(V)・・・ と表している
矢ケ部では、θを使っている
↓
ここで、V→V'などの置換で
a'=φ(V'),b'=φ1(V'),c'=φ2(V')・・・ の根の置換が生じる(a'=φ(V')がまた元の方程式の根になることは証明があるので、どちらかの本を見ること)
↓
一般の5次方程式ならこの置換はV→Vの恒等置換も含めて120個。つまり、5次対称群S5になる
170:132人目の素数さん
12/04/21 08:34:51.71
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
171:現代数学の系譜11 ガロア理論を読む
12/04/21 08:46:33.30
>>169 つづき
では、方程式の群が対称群でない場合>>152はどうなるか?
>一般の5次方程式ならF(x)は既約で、120次元の方程式
ここが、方程式の群が対称群でない場合崩れる
つまり、根の置換で異なる値V'、V''、V'''・・・を全て集めてF(x)=(x-V)(x-V')(x-V'')(x-V''')・・・を作る
F(x)の係数は、元の体(それが有理数体QならQに)
ここで、方程式の群が例えば巡回群ならF(x)は可約になって、有理数体Qの中で因数分解できることになる
そして、F(x)を因数分解して既約にした方程式F'(x)(と書く)の方程式の群は巡回群。というか、巡回群になるまで因数分解できると言った方が分かりやすいかも
つまり、最初から120次元の方程式を作らなくっても巡回群の分だけ置換で異なる値V'、V''、V'''・・・を集めれば良かったと
だが、理論構築としては、一般の方程式の場合=対称群、特別の場合=対称群の部分群 という流れを作るのが綺麗なんだ
172:132人目の素数さん
12/04/21 08:51:25.51
>>171
そんなことはガロア理論を学んだ者はよく知っている。
だから隠れた対称性ってなによ?
173:132人目の素数さん
12/04/21 08:52:52.77
__ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、
/ /:::::; -‐''" `ーノ
/ /:::::/ \
/ /::::::/ | | | |
| |:::::/ / | | | | | |
| |::/ / / | | || | | ,ハ .| ,ハ|
| |/ / / /| ,ハノ| /|ノレ,ニ|ル'
| | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。
. | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。
| l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。
| ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて
| /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。
| (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は?
| / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら?
| |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \
. | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \
| /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 |
| |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、
| |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄|
| /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_|
| |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
| /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
174:現代数学の系譜11 ガロア理論を読む
12/04/21 09:00:38.03
>>171 つづき
ガロア理論のガロア論文オリジナル>>3をスケッチしておこう
ガロアリゾルベントV>>15 V=Aa+Bb+Cc+・・・ a,b,c・・・は、(重根を持たない)で問題の方程式の根、A,B,C・・・は根の置換で異なる値をとるように定める
↓
根の置換で異なる値V'、V''、V'''・・・を全て集めて F(x)=(x-V)(x-V')(x-V'')(x-V''')・・・ を作る F(x)の係数は、元の体(それが有理数体QならQに)
↓
F(x)が既約か可約かを確かめる
可約なら因数分解をして既約なF'(x)を求める(F(x)が既約ならF'(x)=F(x))
↓
F'(x)の根をあらためてV、V'、V''、V'''・・・とする
↓
V、V'、V''、V'''・・・から根の置換が定まる
(根a,b,c・・は、a=φ(V),b=φ1(V),c=φ2(V)・・・ とVの有理式で表すことができ、V→V'に置き換えたφ(V')もまた元の方程式の根になるから)
↓
一般の方程式の場合は、この置換全体は対称群(5次方程式ならS5)
そうでない場合は、この置換が演算として群になることを証明して、対称群の部分群になると
↓
そうして、どんな場合でも与えられた方程式からガロアリゾルベントVを使って方程式のガロア群が作れる
175:現代数学の系譜11 ガロア理論を読む
12/04/21 09:04:05.76
>>172
>そんなことはガロア理論を学んだ者はよく知っている。
???
ガロア理論を学んだ者に自分を含めているのか?
うそでしょ
176:132人目の素数さん
12/04/21 09:10:48.28
>>174
それは現在では単拡大の定理を使って説明する。
だから本質的には良く知られている。
いいから隠れた対称性って何よ?
177:132人目の素数さん
12/04/21 09:13:50.95
>>175
少なくともあんたより良く知っている
178:現代数学の系譜11 ガロア理論を読む
12/04/21 09:26:00.89
>>174
ガロア理論のガロア論文オリジナルについて解説している本は知る限り
>>3の守屋本、>>4の倉田本、>>169の矢ケ部本くらい
前スレ>>39で紹介した
URLリンク(www.kyoritsu-pub.co.jp)
代数方程式のガロアの理論(ISBN4-320-01770-6)Jean-Pierre Tignol
もガロア論文オリジナルについて解説している
「14.2 方程式のガロア群」、「付録 ガロアよる置換群の表現」のところだ
179:現代数学の系譜11 ガロア理論を読む
12/04/21 09:28:14.07
>>177
>少なくともあんたより良く知っている
???
その証明は?
180:現代数学の系譜11 ガロア理論を読む
12/04/21 09:29:08.05
>>176
>それは現在では単拡大の定理を使って説明する。
正規拡大じゃないのか
181:132人目の素数さん
12/04/21 09:38:57.38
>>180
ガロア拡大の話をしてるんだろ。
正規拡大の性質を使うに決まってる。
182:現代数学の系譜11 ガロア理論を読む
12/04/21 09:39:00.87
>>175 つづき
>そんなことはガロア理論を学んだ者はよく知っている。
>>40に戻ろう
URLリンク(www.sci.nagoya-u.ac.jp)
眠りから覚めた微分ガロア理論 梅村 浩 多元数理科学専攻教授 名古屋大学理学部・理学研究科 広報誌 No.10 p14_15
彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。
(2)ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。
と梅村 浩先生は書いた
名古屋大学理学部・理学研究科 広報誌 No.10(下記)。対象読者は、広く一般社会人や生徒を対象とし、高等学校の一般的なレベルの基礎知識があれば興味をもって読み進められる、平易で親しみやすい内容を基本とする
URLリンク(www.sci.nagoya-u.ac.jp)
名古屋大学理学部・大学院理学研究科広報誌[理フィロソフィア]April 2006 理 philosophia
表紙
時を語るもの ・・・・・ 飛田武幸
理のエッセイ ・・・・・ 渡辺芳人
特集「生き物の語る地球史」
彼らはいつ日本に来たのだろうか ・・・ 小澤智生 1 2
うなぎと地球科学 ・・・・・・・・・・ 渡邊誠一郎 1 2
理の先端をいく ・・・・ 原田正康 / 梅村 浩
講義探検 ・・・・・・・ 地球惑星物理学実験 II / 統計物理学 I
理学部交差点
裏表紙
PDF 3.7MB URLリンク(www.sci.nagoya-u.ac.jp)
コンテンツ内容のご紹介
●広報誌の趣旨
本誌は名古屋大学理学部・理学研究科を広く社会に理解してもらい、社会とのコミュニケーション・絆を深めることを目的に発行しています。
理学部の現在の姿を、研究や教育、施設、将来像、人材などその多様な知的資産全体にさまざまな角度から光をあてて紹介をしています。
読者は広く一般社会人や生徒を対象とし、高等学校の一般的なレベルの基礎知識があれば興味をもって読み進められる、平易で親しみやすい内容を基本とします。
(引用おわり)
183:132人目の素数さん
12/04/21 09:42:31.22
>>182
他人の話を鵜呑みにしてんじゃないよ。
だから隠れた対称性ってなによ?
184:132人目の素数さん
12/04/21 09:45:44.32
>>179
隠れた対称性が何か説明するのと関係あるのか?
185:現代数学の系譜11 ガロア理論を読む
12/04/21 09:52:42.04
>>182 つづき
梅村 浩先生の
”彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。
(2)ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。”
を見て、「ガロア理論を学んだ者」>>175が隠れた対称性の意味が分からないだと!?
”対称性ってなによ? 意味不明じゃん 梅村も対象性の意味を書いてないだろ”>>118-120 ??
これで、自分を「ガロア理論を学んだ者」に含めてくれか??
186:現代数学の系譜11 ガロア理論を読む
12/04/21 10:05:50.18
>>185 つづき
”大学の数学科の学生でも理解できている人は少ないと思っています。”
”「証明が分かる」ということと「定理の意味が理解できる」ことの間には相当の隔りがあります。”
”東大生といっても数学科の学生でなければ無理ですね。数学科の学生ならばほとんどの人が理解できるでしょう。”
”数学を専攻された方の半数以上は理解されているのでは?? と思いますが...”
(下記より引用)
まとめると、「証明が分かる」ということと「定理の意味が理解できる」ことの間には相当の隔りがあり、東大数学科の学生ならばほとんどの人(落ちこぼれあり)、一般には数学を専攻された方の半数以上
これからすると、ガロア理論を学んだ者だが、定理の意味が理解できない落ちこぼれだと自白しているのか?
URLリンク(okwave.jp)
5次方程式の代数的解法の不可能性を理解している人は何人いるか? 2008-03-17
5次方程式の代数的解法の不可能性の証明は、難度が高く、大学の数学科の学生でも理解できている人は少ないと思っています。
また、その内容は理解しやすいのに、証明は理解しにくい代表でもあります。
ふと、5次方程式の代数的解法の不可能性の証明を理解している人は、何人くらいいるのだろうと思ったのですが、どうなのでしょうか?
投稿日時 - 2008-03-17 20:59:45
証明は相当易しい部類です。
代数が専門でなくても仮にも数学科に進学しているような学生なら理解できる範疇です。
しかし、「証明が分かる」ということと「定理の意味が理解できる」ことの間には相当の隔りがあります。
ある定理に対して「理解できている」と自分で宣言するときには注意深くあるべきです。
投稿日時 - 2008-03-17 20:00:08
東大生といっても数学科の学生でなければ無理ですね。数学科の学生ならばほとんどの人が理解できるでしょう。
投稿日時 - 2008-03-17 18:43:45
群論をある程度習えば,理解可能と思います.
数学を専攻された方の半数以上は理解されているのでは??
と思いますが...
187:現代数学の系譜11 ガロア理論を読む
12/04/21 10:13:04.39
>>182 つづき
眠りから覚めた微分ガロア理論 梅村 浩先生、名古屋大学理学部・理学研究科 広報誌
理の先端をいくのIIだ
URLリンク(www.sci.nagoya-u.ac.jp)
理の先端をいく
名古屋大学ならではの先端的な研究の取り組みや成果を伝えるコーナー。
専門的で難しくなりがちな話を、一般の方でも興味がもてそうなレベルから読み解いていきます。
・文字数=1600字程度(+図表、脚注など)
188:132人目の素数さん
12/04/21 10:16:39.22
>>185
ひょっとして隠れた対称性ってガロア群のことを
言ってるのか?
189:現代数学の系譜11 ガロア理論を読む
12/04/21 10:24:14.92
>>187 つづき
梅村 浩先生は、ご自身の研究”微分ガロア理論”を紹介する過程で、歴史的なガロア理論に対する経緯の途中として
”彼らはガロア理論を発見した。ガロア理論を次のように説明することができる。
(1)代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。
(2)ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。”
と書かれ、
”リーのアイデアの実現は20世紀の初めまで盛んに試みられたが、問題が難しいこともあって放棄され、ついには忘れ去られてしまった。
私は1996年に、20世紀初頭に活躍したフランスの数学者ヴェッシオ*7の晩年の1つのアイデアを現代代数幾何学*8と結びつけることにより、新しい無限次元微分ガロア理論を提案した。
数年後海外で話題となった。現在はこの分野の研究に注目する数学者が増えてきた。無限次元微分ガロア理論は数十年の眠りから覚めて復活したのである。
1980年代からひそかにこの分野の重要性に注目して、研究をしていた私にとって、復活のための一翼を担うことができたのは、うれしいことである。
数論においてガロア理論が果たしたような役割のごく一部でもよいから微分ガロア理論が微分方程式論において果たしてほしいものである。”
と続けられている
代数方程式は隠れた対称性をもっている。この対称性はガロア群*3で記述される。ガロア群を観察すれば、公式(1)を一般化する公式がつくれないことが証明できる。
これと、同様のことが、微分方程式でもできるのだと。それが、”微分ガロア理論”だと
”微分ガロア理論”を直接語るより、代数方程式を語って、「それと同じことが”微分ガロア理論”でできるという研究をしたのだと」説明している
いわば、上記(1)(2)は、”微分ガロア理論”を説明するためのキーの文章であり、それはエッセンスであり、梅村 浩先生がガロア理論に対して持つ心象風景だと思うんだ
自分はこれを読んで上記(1)(2)に感心した
だが、あんたは”対称性ってなによ? 意味不明じゃん 梅村も対象性の意味を書いてないだろ”>>118-120 ??かよ