12/03/18 09:09:51.54
>>71
>今ではそれがリーマン予想にまで及んでいる。
(再録)前スレ221
>だって数学というモノは神様が創った壮大な作品ですからね。だから人
>造物なんかとは比較になりませんよ。
確かにね
NHKの番組で、以前リーマン予想についての番組があった(こいつは見逃したのでDVDで見た)
リーマン予想に関しゼータ関数の非自明な零点分布(の間隔)が、ダイソンの研究していたランダム行列の固有値の分布(間隔)と一致するという結構有名な話題が取り上げられていたね
量子カオスとも関係していると。不思議なこともあるものだね
URLリンク(www.geocities.jp)
[2]リーマン予想と量子物理学との関連
これらのことにより,ゼータ関数の零点分布がランダム行列理論で得られる関数で表されることは予想されていたのですが,近年,ルドニックとサルナックはこれを部分的に証明したという・・・.
このようにゼータ関数の零点を作用素のスペクトルと関連づけて解釈しようとする数論の新しい動きを総称して「数論的量子カオス」と呼ばれます.
素数を周期軌道,零点を固有値と読み変えることによって,ゼータ関数が仮想的な量子系を表現していると考えることができるというのです.
リーマン予想の証明では,このようなゼータ関数の零点が固有値となるような演算子をつきとめるというヒルベルト・ポリヤ以来の行列の固有値方面からのアプローチがあげられるのですが,
フランスの数学者コンヌは,それとは逆に,量子物理のアイディアからリーマン予想を証明しようとその可能性を追求しています.コンヌのアプローチはそのような演算子を実際に構成するというものです.
コンヌはリーマン演算子が作用する対象として非常に変わった空間を構築しました.アデールとはすべてのp進数体Qp{Q2,Q3,Q5,Q7,・・・}と実数体Rから成るのですが,
それぞれに素数を内蔵していてすべての素数を備え,同時に2進数であり3進数でありかつ実数でもあるような仮想的な数体系となっています.
コンヌは有理数体Qのアデール環AをQの乗法群Q~で割って得られる非可換空間A/Q~を基にして
リーマン予想 ←→ A/Q~に対して跡公式が成り立つ
を示しました.